Câu hỏi:
25/01/2024 58Cho hình vẽ bên.
Có bao nhiêu cặp tam giác bằng nhau?
A. 1;
A. 1;
B. 2;
B. 2;
C. 3;
D. 4.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
⦁ Xét ∆AHD và ∆AHE, có:
AH là cạnh chung.
.
HD = HE (giả thiết)
Do đó ∆AHD = ∆AHE (c.g.c)
⦁ Ta có HD = HE (giả thiết) và DB = EC (giả thiết)
Suy ra HD + DB = HE + EC.
Khi đó HB = HC.
Xét ∆AHB và ∆AHC, có:
AH là cạnh chung.
.
HB = HC (chứng minh trên)
Do đó ∆AHB = ∆AHC (c.g.c)
⦁ Xét ∆ADB và ∆AEC, có:
AD = AE (do ∆AHD = ∆AHE)
DB = EC (giả thiết)
AB = AC (∆AHB = ∆AHC)
Do đó ∆ADB = ∆AEC (c.c.c)
⦁ Ta có: BE = BD + DE, DE = DE + EC
Mà BD = EC (gt) nên BE = DE
Xét ∆AEB và ∆ADC, có:
AD = AE (do ∆AHD = ∆AHE)
BE = DC (giả thiết)
AB = AC (∆AHB = ∆AHC)
Do đó ∆AEB = ∆ADC (c.c.c)
Vậy có 4 cặp tam giác bằng nhau.
Hướng dẫn giải
Đáp án đúng là: D
⦁ Xét ∆AHD và ∆AHE, có:
AH là cạnh chung.
.
HD = HE (giả thiết)
Do đó ∆AHD = ∆AHE (c.g.c)
⦁ Ta có HD = HE (giả thiết) và DB = EC (giả thiết)
Suy ra HD + DB = HE + EC.
Khi đó HB = HC.
Xét ∆AHB và ∆AHC, có:
AH là cạnh chung.
.
HB = HC (chứng minh trên)
Do đó ∆AHB = ∆AHC (c.g.c)
⦁ Xét ∆ADB và ∆AEC, có:
AD = AE (do ∆AHD = ∆AHE)
DB = EC (giả thiết)
AB = AC (∆AHB = ∆AHC)
Do đó ∆ADB = ∆AEC (c.c.c)
⦁ Ta có: BE = BD + DE, DE = DE + EC
Mà BD = EC (gt) nên BE = DE
Xét ∆AEB và ∆ADC, có:
AD = AE (do ∆AHD = ∆AHE)
BE = DC (giả thiết)
AB = AC (∆AHB = ∆AHC)
Do đó ∆AEB = ∆ADC (c.c.c)
Vậy có 4 cặp tam giác bằng nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm E sao cho IE = IB. Khẳng định nào sau đây đúng?
Cho ∆ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm E sao cho IE = IB. Khẳng định nào sau đây đúng?
Câu 2:
Cho hình vẽ sau. Biết AB // CD và AD // BC.
Hình vẽ trên có mấy cặp tam giác bằng nhau?
Câu 3:
Cho hai tam giác ABC và DEF thỏa mãn AB = DE, ,, AB = 5cm, AC = 6cm, EF = 8cm. Nửa chu vi p tam giác DEF nằm trong khoảng nào dưới đây:
Cho hai tam giác ABC và DEF thỏa mãn AB = DE, ,, AB = 5cm, AC = 6cm, EF = 8cm. Nửa chu vi p tam giác DEF nằm trong khoảng nào dưới đây:
Câu 5:
Cho tam giác ABC cân tại A, có . Trên tia đối của tia BC lấy điểm D sao cho , trên tia đối của tia CB lấy điểm E sao cho BD = CE. Tính ?
Cho tam giác ABC cân tại A, có . Trên tia đối của tia BC lấy điểm D sao cho , trên tia đối của tia CB lấy điểm E sao cho BD = CE. Tính ?
Câu 6:
Cho ∆ABC, điểm M thuộc cạnh BC. Đường thẳng đi qua M và song song với AB cắt AC ở D. Đường thẳng đi qua M và song song với AC cắt AB ở E.
Cho các khẳng định dưới đây:
(I) ;
(II) ME = AD;
(III) ∆AMD = ∆MAE.
Có bao nhiêu khẳng định đúng?
Cho ∆ABC, điểm M thuộc cạnh BC. Đường thẳng đi qua M và song song với AB cắt AC ở D. Đường thẳng đi qua M và song song với AC cắt AB ở E.
Cho các khẳng định dưới đây:
(I) ;
(II) ME = AD;
(III) ∆AMD = ∆MAE.
Có bao nhiêu khẳng định đúng?