Cho hình thang cân ABCD với hai đáy AB và CD, đường chéo AC vuông góc với cạnh bên AD, tia

Cho hình thang cân ABCD với hai đáy AB và CD, đường chéo AC vuông góc với cạnh bên AD, tia CA là tia phân giác của góc C.

Tính chu vi của hình thang đó biết rằng AD = 2 cm.

Trả lời

Media VietJack

Do CA là tia phân giác của  C^ nên  BCA^=ACD^

Mà ABCD là hình thang cân nên AB // CD, suy ra  BAC^=ACD^ (hai góc so le trong)

Do đó,  BAC^=BCA^, suy ra ∆ABC cân tại B.

Đặt  BAC^=α thì  C^=2α.

Vì ABCD là hình thang cân nên  D^=C^=2α.

Tam giác ADC vuông tại A nên  ADC^+ACD^=2α+α=90°, suy ra  α=30°, D^=60°.

Lấy điểm M thuộc cạnh huyền DC sao cho DM = AD, mà  D^=60° thì AMD là tam giác đều, nên  MAD^=60°

Khi đó  MAC^=CAD^MAD^=90°60°=30°

Suy ra  ACM^=CAM^=30° nên tam giác MAC cân tại M

Do đó AM = MC, mà AM = DM = AD

Nên AM = DM = AD = MC hay DC = 2AD.

Vy AB = BC = AD, DC = 2AD nên chu vi hình thang bằng

AB + BC + CD + AD = 5AD = 5.2 = 10 cm.