Cho hình chữ nhật ABCD có AC cắt BD tại I. Gọi H, K, L và J lần lượt là trung điểm của AD, BC, KC
60
18/03/2024
Bài 1 trang 40 Chuyên đề Toán 11: Cho hình chữ nhật ABCD có AC cắt BD tại I. Gọi H, K, L và J lần lượt là trung điểm của AD, BC, KC và IC. Chứng minh hình thang JLKI và hình thang IHDC đồng dạng với nhau.
Trả lời
Ta có J là trung điểm IC (giả thiết).
Suy ra .
Do đó V(C, 2)(J) = I.
Chứng minh tương tự, ta được V(C, 2)(L) = K, V(C, 2)(K) = B, V(C, 2)(I) = A.
Vì vậy V(C, 2) biến hình thang JLKI thành hình thang IKBA.
Hình chữ nhật ABCD có I là giao điểm của hai đường chéo, suy ra I là trung điểm BD.
Do đó ĐI(B) = D.
Chứng minh tương tự, ta được ĐI(A) = C, ĐI(K) = H.
Lại có ĐI(I) = I.
Do đó ĐI biến hình thang IKBA thành hình thang IHDC.
Vì vậy phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm C, tỉ số 2 và phép đối xứng tâm I biến hình thang JLKI thành hình thang IHDC.
Vậy hình thang JLKI và hình thang IHDC đồng dạng với nhau.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 5: Phép quay
Bài 6: Phép vị tự
Bài 7: Phép đồng dạng
Bài tập cuối chuyên đề 1
Bài 1: Đồ thị
Bài 2: Đường đi Euler và đường đi Hamilton