Câu hỏi:

03/04/2024 35

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AD\) là đáy lớn thỏa mãn \(AD = 2BC\). Các điểm \(M,N\) lần lượt là trung điểm của các cạnh \(SA,\,\,SD\).

     a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SBC} \right)\).

     b) Mặt phẳng \(\left( {MCD} \right)\) cắt \(SB\) tại \(E\). Tính tỉ số \(\frac{{SE}}{{EB}}\).

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

a) \[\left\{ \begin{array}{l}a||b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a||\left( P \right)\].

b) Chọn \[SB \subset \left( Q \right)\], tìm \[d = \left( Q \right) \cap \left( {MCD} \right)\], từ đó suy ra \[E = d \cap SB\].

     Sử dụng tính chất trọng tâm và định lí Ta-lét.

Cách giải:

Media VietJack

a) Vì \[MN\] là đường trung bình của tam giác \[SAD \Rightarrow MN||AD\] (tính chất đường trung bình).

Mà \[AD||BC\left( {gt} \right) \Rightarrow MN||BC\].

Lại có \[BC \cap \left( {SBC} \right) \Rightarrow MN||\left( {SBC} \right)\].

b) Gọi \[O\] là trung điểm của \[AD\] ta có: \[\left\{ \begin{array}{l}OD = BC = \frac{1}{2}AD\\OD||BC\left( {AD||BC} \right)\end{array} \right. \Rightarrow BCDO\] là hình bình hành \[ \Rightarrow BO||CD\].

Chọn \[SB \subset \left( {SBO} \right)\], tìm giao tuyến của \[\left( {MCD} \right)\] và \[\left( {SBO} \right)\].

+ \[G\] là điểm chung thứ nhất.

\[\left\{ \begin{array}{l}\left( {SBO} \right) \supset BO\\\left( {MCD} \right) \supset CD\\BO||CD\left( {cmt} \right)\end{array} \right.\] Þ Giao tuyến của \[\left( {MCD} \right)\] và \[\left( {SBO} \right)\] là đường thẳng qua \[G\] và song song với \[BO,CD\].

Trong \[\left( {SBO} \right)\] kẻ \[GE||BO\left( {E \in SB} \right) \Rightarrow \left( {MCD} \right) \cap \left( {SBO} \right) = GE\].

Ta có: \[\left\{ \begin{array}{l}E \in SB\\E \in GH \subset \left( {MCD} \right)\end{array} \right. \Rightarrow E = SB \cap \left( {MCD} \right)\].

Xét tam giác \[SAD\] có \[G\] là giao điểm của hai đường trung tuyến

Þ \[G\] là trọng tâm tam giác \[SAD \Rightarrow \frac{{SG}}{{GO}} = 2\].

Do \[GE||OB\] nên áp dụng đinh lí Ta-lét ta có \[\frac{{SE}}{{EB}} = \frac{{SG}}{{GO}} = 2\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian cho 10 điểm phân biệt, trong đó không có 4 điểm nào đồng phẳng. Số các hình tứ diện có thể kẻ được là:

Xem đáp án » 03/04/2024 47

Câu 2:

Cho số tự nhiên \(n\) thỏa mãn \(A_n^2 = 132\). Giá trị của \(n\) là:

Xem đáp án » 03/04/2024 43

Câu 3:

Gieo ngẫu nhiên 3 con súc sắc cân đối, đồng chất. Xác suất để tích số chấm xuất hiện trên ba con súc sắc là một số tự nhiên chẵn là:

Xem đáp án » 03/04/2024 40

Câu 4:

Cho hình vuông ABCD tâm O. Ảnh của đường thẳng CD qua phép quay tâm O, góc quay -90° là:
Media VietJack

Xem đáp án » 03/04/2024 39

Câu 5:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên có 4 chữ số?

Xem đáp án » 03/04/2024 39

Câu 6:

Cho hình chóp \(S.ABCD\). Gọi \(M\)và \(N\) lần lượt là trung điểm của \(SA\) và \(SC\). Khẳng định nào sau đây là đúng?
Media VietJack

Xem đáp án » 03/04/2024 38

Câu 7:

Cho hình chóp S.ABCDABCD là hình thang cân đáy lớn AD. Gọi M, N, P lần lượt là trung điểm của AB, CD, SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {MNP} \right)\)

Xem đáp án » 03/04/2024 37

Câu 8:

Hệ số của \({x^5}\) trong khai triển \(P\left( x \right) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\) là:

Xem đáp án » 03/04/2024 37

Câu 9:

Mỗi tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.

Xem đáp án » 03/04/2024 37

Câu 10:

Trong mặt phẳng tọa độ Oxy, cho \(\Delta :x - 2y - 1 = 0\)\(\overrightarrow u \left( {4;3} \right)\). Gọi \(d\) là đường thẳng sao cho \({T_{\overrightarrow u }}\) biến \(d\) thành đường thẳng \(\Delta \). Phương trình đường thẳng \(d\) là

Xem đáp án » 03/04/2024 36

Câu 11:

Từ các số 1, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau?

Xem đáp án » 03/04/2024 36

Câu 12:

Hệ số của \[{x^{12}}\]trong khai triển \[{\left( {{x^2} + x} \right)^{10}}\]

Xem đáp án » 03/04/2024 34

Câu 13:

Trong không gian, mệnh đề nào sau đây đúng?
Media VietJack

Xem đáp án » 03/04/2024 34

Câu 14:

Mệnh đề nào dưới đây sai?

Xem đáp án » 03/04/2024 32

Câu 15:

Hàm số \(y = \cos x\) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 03/04/2024 31