Câu hỏi:
03/04/2024 48Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB.
Gọi (P) là mặt phẳng qua M và song song với SA; BC.
Thiết diện của hình chóp cắt bởi mặt phẳng (P) là :
A. Tam giác
B. Tam giác cân tại M
C. Hình thang
D. Hình thang cân
Trả lời:
Đáp án C
+ Trong mặt phẳng (SAB) ,qua M dựng đường thẳng song song SA. cắt AB tại N
suy ra: N là trung điểm của AB.
+ Trong mặt phẳng ( ABCD), qua điểm N dựng đường thẳng song song với BC, cắt CD tại P.
Suy ra: P là trung điểm của CD
+ Trong mặt phẳng ( SBC), qua điểm M dựng đường thẳng song song với BC, cắt SC tại Q
Suy ra: Q là trung điểm của SC.
Khi đó, mặt phẳng (P) chính là mặt phẳng (MNPQ),
+ Giao tuyến của mp(P) với (SBC) là MQ
+ Giao tuyến của mp (P) với (SCD) là QP
+ Giao tuyến của mp (P) với ( ABCD )là PN
+ Giao tuyến của mp (P) với (SAB ) là NM
Do đó,thiết diện của hình chóp đã cho cắt bởi mp (P) là tứ giác M NPQ
Theo cách dựng ta có: MQ// NP (vì cùng// BC)
lại có
Do đó, tứ giác MNPQ là hình thang
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. khẳng định nào sau đây là đúng?
Câu 3:
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm giao tuyến của (MAB) với (SCD).
Câu 4:
Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?
Câu 5:
Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?
(1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.
(2) Nếu mặt phẳng (a,b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.
(3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.
Câu 6:
Cho hình chóp S. ABCD với đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Đường thẳng nào sau đây không song song với đường thẳng MN?
Câu 7:
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm khẳng định đúng
Câu 9:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là các điểm nằm trên các cạnh BC, SC, SD, AD sao cho MN//BS, NP//CD, MQ // CD. Những khẳng định nào sau đây là đúng?
1) PQ // SA
(2) PQ // MN
(3) tứ giác MNPQ là hình thang
(4) tứ giác MNPQ là hình bình hành
Câu 10:
Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho AM/AC = BN/BF = k. Tìm k để MN // DE.
Câu 11:
Cho hai đường thẳng a và b chéo nhau. Những phát biểu nào sau đây là sai?
(1) tồn tại hai đường thẳng c, d song song với nhau, mỗi đường đều cắt cả a và b.
(2) không thể tồn tại hai đường thẳng c, d phân biệt, mỗi đường đều cắt cả a và b.
(3) không thể tồn tại một đường thẳng cắt cả a và b.
Câu 12:
Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. khẳng định nào sau đây là đúng?
Câu 13:
Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?
Câu 15:
Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?