Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, CD, SA. a) Chứng minh rằng SC song song với mặt phẳng (MNP). b) Xác định giao tuyến c

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, CD, SA.

a) Chứng minh rằng SC song song với mặt phẳng (MNP).

b) Xác định giao tuyến của hai mặt phẳng (MNP) và (SCD).

Trả lời
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, CD, SA.  a) Chứng minh rằng SC song song với mặt phẳng (MNP).  b) Xác định giao tuyến của hai mặt phẳng (MNP) và (SCD).   (ảnh 1)

a) Gọi I là giao điểm của AC với MN.

M, N lần lượt là trung điểm của các cạnh AB, CD của hình hành ABCD nên I là trung điểm của AC.

Lại có P là trung điểm của SA.

Do đó, PI là đường trung bình của tam giác SAC, suy ra PI // SC.

Mà PI (MNP) nên SC // (MNP).

b) Hai mặt phẳng (MNP) và (SCD) có điểm chung là N và lần lượt chứa hai đường thẳng PI, SC song song với nhau nên giao tuyến của hai mặt phẳng (MNP) và (SCD) là đường thẳng d đi qua N và song song với SC.

Câu hỏi cùng chủ đề

Xem tất cả