Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là điểm H trên cạnh AB sao cho HA=2HB. Góc giữa SC mặt phẳng (ABC) bằng 600. Tính khoảng cách giữa hai đường thẳng SA và BC theo a. 

A. a428.                       
B. a68.                         
C. a67.    
D. a423.

Trả lời

Chọn A.

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ảnh 1)

Qua A kẻ đường thẳng d song song với BC. Gọi I là hình chiếu vuông góc của H lên d

BC//SAIdBC,SA=dBC,SAI=dB,SAI=32dH,SAI.

Gọi K là hình chiếu vuông góc của H lên SI

AIHI,AISHAISHIAIHK.

HKSAIdH,SAI=HK.

HAI^=1800600+600=600.

Tam giác AIH vuông tại I:IH=AHsin600=a33.

SC,ABC^=SC,CH^=SCH^=600.

CH2=BC2+BH22BC.BH.cos600=7a29CH=a73.

Tam giác SHC vuông tại H:SH=HC.tan600=a213.

Tam giác SHI vuông tại H:1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32HK=a428.

Vậy dSA,BC=a428.

Câu hỏi cùng chủ đề

Xem tất cả