Cho hình chóp S.ABC có SA ⊥ (ABC), tam giác ABC vuông tại B, SA = AB = BC = a

Bài 7.12 trang 42 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), tam giác ABC vuông tại B, SA = AB = BC = a.

a) Xác định hình chiếu của A trên mặt phẳng (SBC).       

b) Tính góc giữa SC và mặt phẳng (ABC).

Trả lời

Bài 7.12 trang 42 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Kẻ AD ⊥ SB tại D.

Vì SA ⊥ (ABC) nên SA ⊥ BC.

Do ABC là tam giác vuông tại B nên AB ⊥ BC mà SA ⊥ BC, suy ra BC ⊥ (SAB).

Vì BC ⊥ (SAB) nên BC ⊥ AD mà AD ⊥ SB nên AD ⊥ (SBC).

Vậy D là hình chiếu của A trên mặt phẳng (SBC).

b) Vì SA ⊥ (ABC) nên AC là hình chiếu của SC trên mặt phẳng (ABC).

Khi đó góc giữa SC và mặt phẳng (ABC) bằng góc giữa hai đường thẳng AC và SC, mà (AC, SC) = SCA^.

Xét tam giác ABC vuông tại B có: AC=AB2+BC2=a2+a2=a2.

Vì SA ⊥ (ABC) nên SA ⊥ AC.

Xét tam giác SAC vuông tại A, có tanSCA^=SAAC=aa2=12 SCA^=35,26°.

Vậy góc giữa SC và mặt phẳng (ABC) khoảng 35,26°.

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Câu hỏi cùng chủ đề

Xem tất cả