Câu hỏi:
03/04/2024 61Cho hình chóp S.ABCD có SA⊥(ABC) và tam giác ABC vuông ở B. Gọi AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?
A. SA⊥BC
B. AH⊥AC
C. AH⊥SC
D. AH⊥BC
Trả lời:
Chọn B.
+) Vì tam giác ABC vuông tại B nên BC ⊥ AB.
- Lại có:
+) Theo gt AH ⊥ SB vậy:
- Do đó AH không thể vuông góc với AC.(Một tam giác không thể có đồng thời hai góc vuông)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét ba mệnh đề sau:
(1) Nếu hàm số f(x) có đạo hàm tại điểm thì f(x) liên tục tại điểm đó.
(2) Nếu hàm số f(x) liên tục tại điểm thì f(x) có đạo hàm tại điểm đó.
(3) Nếu f(x) gián đoạn tại thì chắc chắn f(x) không có đạo hàm tại điểm đó.
- Trong ba câu trên:
Câu 2:
Cho tứ diện ABCD, biết hai tam giác ABC và BCD là hai tam giác cân có chung cạnh đáy BC. Gọi I là trung điểm của cạnh BC. Khẳng định nào đúng trong các khẳng định sau?
Câu 4:
Viết phương trình tiếp tuyến của đồ thị hàm số sao cho tiếp tuyến có hệ số góc nhỏ nhất.
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc . Biết SA = SB = SC = a. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng:
Câu 12:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong các đẳng thức véc tơ sau đây, đẳng thức nào đúng?
Câu 14:
Giới hạn (nếu tồn tại và hữu hạn) nào sau đây dùng để định nghĩa đạo hàm của hàm số y = f(x) tại điểm ?
Câu 15:
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Mặt phẳng (P) đi qua trung điểm M của AB và vuông góc với SB, cắt AC, SC, SB lần lượt tại N, P, Q. Tứ giác M PQ là hình gì?