Câu hỏi:
01/04/2024 44Cho hàm số . Có mấy điểm M ∈ (C), biết tiếp tuyến của (C) tại M cắt hai trục tọa độ tại A; B và tam giác OAB có diện tích bằng 1/4.
A: 0
B: 1
C: 2
D: 3
Trả lời:
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm A ∈ (C): y = x3 – 3x + 1 biết rằng tiếp tuyến của đồ thị (C) tại điểm A cắt đồ thị (C) tại B (khác điểm A) thỏa: xA + xB = 1?
Câu 2:
Cho hàm số (C). Có bao nhiêu cặp điểm A, B thuộc (C) mà tiếp tuyến tại đó song song với nhau:
Câu 3:
Cho hàm số .Viết phương trình tiếp tuyến với đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng d : x – y + 2017 = 0.
Câu 4:
Cho hàm số .Viết phương trình tiếp tuyến d với đồ thị hàm số biết d tạo với trục hoành một góc α mà
Câu 5:
Cho hàm số . Diện tích của tam giác tạo bởi các trục tọa độ và tiếp tuyến của đồ thị của hàm số (1) tại điểm M(-2; 5) là a/b ( phân số tối giản) .Tính a + b.
Câu 6:
Cho hàm số . Có mấy phương trình tiếp tuyến của đồ thị biết tiếp tuyến tạo với đường thẳng góc
Câu 7:
Cho đồ thị . Tìm m để tiếp tuyến tại giao điểm của (Cm) với Ox song song với đường thẳng d: y = -x - 5.
Câu 8:
Cho hàm số . Gọi I(1; 2) Tìm điểm M ∈ (C) sao cho tiếp tuyến của (C) tại M vuông góc với đường thẳng IM?
Câu 9:
Gọi (Cm) là đồ thị của hàm số (m là tham số).
Gọi M là điểm thuộc (Cm) có hoành độ bằng -1. Tìm m để tiếp tuyến của (Cm) tại điểm M song song với đường thẳng 5x – y = 0
Câu 10:
Cho hàm số . Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ 0.
Câu 11:
Cho hàm số y = x3 – 3x2 + 1 (C). Tìm tổng hoành độ của hai điểm A; B trên đồ thị hàm số sao cho tiếp tuyến của đồ thị (C) tại A; B song song với nhau và
Câu 12:
Cho hàm số y = x3 + 3x2 – 9x + 5 (C). Trong tất cả các tiếp tuyến của đồ thị (C), hãy tìm tiếp tuyến có hệ số góc nhỏ nhất.
Câu 13:
Có mấy điểm sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng d: 4x + y = 0 ?Có mấy điểm sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng d: 4x + y = 0 ?
Câu 14:
Tìm m để các hàm số y = (m – 1)x3 – 3(m + 2)x2 – 6(m + 2)x + 1 có y’ ≥ 0, ∀ x ∈ R.
Câu 15:
Cho hàm số (C): . Viết phương trình tiếp tuyến đi qua A(-6; 5) của đồ thị (C).