Cho hàm số f(x)= 3 nếu x<=1 và ax+b nếu 1< x<2 và 5 nếu x>=2 . Xác định a, b để hàm số liên tục trên ℝ.

Cho hàm số fx=3                nê'u  x1ax+b    nê'u  1<x<25                nê'u  x2 . Xác định a, b để hàm số liên tục trên ℝ.

Trả lời

+ Với x < 1 thì f(x) = 3 luôn liên tục trên (– ; 1).

+ Với 1 < x < 2 thì f(x) = ax + b luôn liên tục trên (1; 2).

+ Với x > 2 thì f(x) = 5 luôn liên tục trên (2; +).

Do đó, ta cần xét tính liên tục của hàm số f(x) tại x = 1 và x = 2.

Ta có: limx1+fx=limx1+ax+b=a+b ; limx1fx=limx13=3 ; f(1) = 3;

limx2+fx=limx2+5=5limx2fx=limx2ax+b=2a+b; f(2) = 5.

Để hàm số f(x) liên tục trên thì hàm số f(x) phải liên tục tại x = 1 và x = 2, tức là

 limx1+fx=limx1fx=f1limx2+fx=limx2fx=f2a+b=32a+b=5a=2b=1 .

Vậy a = 2, b = 1 thì hàm số f(x) liên tục trên ℝ.