Cho hai đơn thức: A = ‒132x^(n + 1)y10z^(n + 2); B = 1,2x^5y^nz^(n + 1) với n là số tự nhiên. a) Tìm các số tự nhiên n để đơn thức A chia hết cho đơn thức B. b) Tìm đa thức P sao cho P = A
22
22/07/2024
Cho hai đơn thức: A = ‒132xn + 1y10zn + 2; B = 1,2x5ynzn + 1 với n là số tự nhiên.
a) Tìm các số tự nhiên n để đơn thức A chia hết cho đơn thức B.
b) Tìm đa thức P sao cho P = A : B.
c) Tính giá trị của đa thức P tại n = 9; x = 2; y = –1; z = 5,8.
Trả lời
Lời giải
a) Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Suy ra \(\left\{ \begin{array}{l}5 \le n + 1\\n \le 10\\n + 1 \le n + 2\end{array} \right.\)
Do đó \(\left\{ \begin{array}{l}n \ge 4\\n \le 10\\0 \le 1\end{array} \right.\) hay 4 ≤ n ≤ 10.
Mà n ∈ ℕ nên n ∈ {4; 5; 6; 7; 8; 9; 10}.
Vậy n ∈ {4; 5; 6; 7; 8; 9; 10} thì đơn thức A chia hết cho đơn thức B.
b) Ta có: P = A : B
= (‒132xn + 1y10zn + 2) : (1,2x5ynzn + 1)
= (‒132 : 1,2)(xn + 1 : x5)(y10 ‒ yn)(zn + 2 : zn + 1)
= ‒110xn + 1 ‒ 5y10 ‒ nzn + 2 ‒ n ‒ 1
= ‒110xn ‒ 4y10 ‒ nz.
Vậy P = ‒110xn ‒ 4y10 ‒ nz.
c) Thay n = 9; x = 2; y = –1; z = 5,8 vào P ta có:
P = ‒110.29 ‒ 4.(‒1)10 ‒ 9.5,8
= ‒110.25.(–1).5,8
= 110 . 32 . 5,8
= 20 416.
Vậy P = 20 416.