Câu hỏi:

03/04/2024 29

Cho hai điểm \(A\left( {1;2} \right);{\rm{ }}A'\left( {3;4} \right).\) Nếu \(A' = {D_\Delta }\left( A \right)\) thì đường thẳng \(\left( \Delta \right)\) có phương trình là

A. \(\left( \Delta \right):x - y + 1 = 0\)

B. \(\left( \Delta \right):x - y - 5 = 0\)

C. \(\left( \Delta  \right):x + y - 5 = 0\)

Đáp án chính xác

D. Kết quả khác

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Do \(A'\) đối xứng A qua \(\left( \Delta \right)\) nên đường thẳng \(\left( \Delta \right)\) là đường trung trực của \(AA'.\) Từ đó xác định điểm đi qua và 1 VTPT của đường thẳng \(\left( \Delta \right).\)

+) Đường thẳng đi qua \(M\left( {{x_0};{y_0}} \right)\) vá có 1 VTPT \(\overrightarrow n = \left( {a;b} \right)\) có phương trình \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) = 0.\)

Cách giải:

Do \(A'\) đối xứng \(A\) qua \(\left( \Delta \right)\) nên đường thẳng \(\left( \Delta \right)\) là đường trung trực của \(AA'.\) Do đó \(\left( \Delta \right)\) đi qua trung điểm \(I\left( {2;3} \right)\) của \(AA'\) và nhận \(\overline {AA'} = \left( {2;2} \right)\) là 1 VTPT.

Khi đó ta có phương trình \(\left( \Delta \right):2\left( {x - 2} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + y - 5 = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gieo 3 con súc sắc cân đối, đồng chất. Xác suất để tích số chấm xuất hiện trên mặt của 3 con súc sắc lập thành một số nguyên tố là

Xem đáp án » 03/04/2024 43

Câu 2:

Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1 huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là

Xem đáp án » 03/04/2024 41

Câu 3:

Đa giác đều nào có 20 đường chéo

Xem đáp án » 03/04/2024 41

Câu 4:

Trong khai triển \(f\left( x \right) = {\left( {{x^2} + \frac{2}{x}} \right)^9}\left( {x \ne 0} \right)\) thì số hạng tự do (số hạng không chứa x) là:

Xem đáp án » 03/04/2024 40

Câu 5:

Cho điểm \(A\left( {1;12} \right)\). Gọi \(A' = {D_{Ox}}\left( A \right)\) khi đó tọa độ điểm \(A'\) là:

Xem đáp án » 03/04/2024 39

Câu 6:

Một lớp học có 20 học sinh nam và 24 học sinh nữ. Khi đó số cách chọn ra 1 học sinh làm nhiệm vụ trực nhật là:

Xem đáp án » 03/04/2024 38

Câu 7:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)

2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).

3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)

Xem đáp án » 03/04/2024 38

Câu 8:

Điều kiện cần và đủ của tham số m để phương trình \(\sin x - \sqrt 3 m\cos x = 2m\) có nghiệm là:

Xem đáp án » 03/04/2024 37

Câu 9:

Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau:

Xem đáp án » 03/04/2024 37

Câu 10:

Trong một lớp học có 20 học sinh nam và 24 học sinh nữ. Chọn ra ngẫu nhiên 2 học sinh đi trực nhật. Khi đó xác suất để đội trực nhật có 1 học sinh nam và 1 học sinh nữ là

Xem đáp án » 03/04/2024 37

Câu 11:

Cho hai điểm \(A\left( {1;2} \right);I\left( {3;4} \right).\) Gọi \(A' = {D_I}\left( A \right)\) khi đó điểm \(A'\) có tọa độ là:

Xem đáp án » 03/04/2024 37

Câu 12:

Số nghiệm \(x \in \left[ {0;2\pi } \right]\) của phương trình \(\sin x = \frac{{\sqrt 2 }}{2}\) là:

Xem đáp án » 03/04/2024 36

Câu 13:

Nghiệm của phương trình \(\cot x = \cot 2x\) là:

Xem đáp án » 03/04/2024 36

Câu 14:

Trong khai triển \(f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}} + {a_{14}}{x^{14}} + ... + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\) thì tổng của tất cả các hệ số là

Xem đáp án » 03/04/2024 36

Câu 15:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7 lập được bao nhiêu số tự nhiên có 6 chữ số, các chữ số đều khác nhau và số đó lớn hơn 540000?

Xem đáp án » 03/04/2024 36