Câu hỏi:
03/04/2024 32
Cho các mệnh đề sau:
\(\left( I \right)\): Hàm số \(y = \sin x\) có chu kì là \(\frac{\pi }{2}\).
\(\left( {II} \right)\): Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
\(\left( {III} \right)\): Đồ thị hàm số \(y = \cos x\) đối xứng qua trục tung.
\(\left( {IV} \right)\): Hàm số \(y = \cot x\) đồng biến trên \(\left( { - \pi ;0} \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
Cho các mệnh đề sau:
\(\left( I \right)\): Hàm số \(y = \sin x\) có chu kì là \(\frac{\pi }{2}\).
\(\left( {II} \right)\): Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
\(\left( {III} \right)\): Đồ thị hàm số \(y = \cos x\) đối xứng qua trục tung.
\(\left( {IV} \right)\): Hàm số \(y = \cot x\) đồng biến trên \(\left( { - \pi ;0} \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 2.
B. 4.
C. 1.
D. 3.
Trả lời:
Đáp án A
Phương pháp:
Nhận xét từng mệnh đề rồi kết luận.
Cách giải:
Hàm số \(y = \sin x\) có chu kỳ là \(2\pi \) nên I sai.
Hàm số \(y = \tan x\) xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\) nên II đúng.
Ta có hàm số \(y = \cos x\) có \(y\left( x \right) = y\left( { - x} \right)\) nên đồ thị hàm số đối xứng với nhau qua trục tung nên III đúng.
Hàm số \(y = \cot x\) luôn nghịch biến trên R nên IV sai.
Đáp án A
Phương pháp:
Nhận xét từng mệnh đề rồi kết luận.
Cách giải:
Hàm số \(y = \sin x\) có chu kỳ là \(2\pi \) nên I sai.
Hàm số \(y = \tan x\) xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\) nên II đúng.
Ta có hàm số \(y = \cos x\) có \(y\left( x \right) = y\left( { - x} \right)\) nên đồ thị hàm số đối xứng với nhau qua trục tung nên III đúng.
Hàm số \(y = \cot x\) luôn nghịch biến trên R nên IV sai.