Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, góc BAE = góc DCE. Chứng minh rằng a) E là trung điểm của các đoạn thẳng AC và BD
238
09/12/2023
Bài 4.26 trang 61 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, . Chứng minh rằng:
a) E là trung điểm của các đoạn thẳng AC và BD.
b) ∆ACD = ∆CAB.
c) AD song song với BC.
Trả lời
a) Xét tam giác ABE có:
(1)
Xét tam giác CDE có:
(2)
Mà (giả thiết); (hai góc đối đỉnh) (3)
Từ (1), (2), (3) ta suy ra .
Xét ∆ABE và ∆CDE có:
(chứng minh trên)
AB = CD (giả thiết)
(giả thiết)
Do đó, ∆ABE = ∆CDE (g – c – g).
Suy ra, AE = CE; BE = DE (các cặp cạnh tương ứng)
Vì AE = CE và E nằm giữa A và C nên E là trung điểm của AC;
Vì BE = DE và B nằm giữa D và B nên E là trung điểm của BD.
b) Xét ∆ACD và ∆CAB có:
CD = AB (giả thiết)
AC chung
(giả thiết)
Do đó, ∆ACD = ∆CAB (c – g – c).
c) Vì ∆ACD = ∆CAB nên (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên AD song song với BC.