Câu hỏi:

01/02/2024 56

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.

Cho các phát biểu sau:

(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];               

(II) AD + BE + CF < AB + BC + AC.

Chọn khẳng định đúng:

A. Chỉ (I) đúng;

B. Chỉ (II) đúng;

C. Cả (I) và (II) đều đúng;

Đáp án chính xác

D. Cả (I) và (II) đều sai.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

• Ta xét (I):

Vì G là trọng tâm của ∆ABC nên ta có \(GB = \frac{2}{3}BE\)\(GC = \frac{2}{3}CF\).

∆GBC có GB + GC > BC (bất đẳng thức tam giác).

Suy ra \(\frac{2}{3}BE + \frac{2}{3}CF > BC\).

Hay \(\frac{2}{3}\left( {BE + CF} \right) > BC\).

Do đó \(BE + CF > \frac{3}{2}BC\) (1).

Chứng minh tương tự ta được:

+) \(AD + BE > \frac{3}{2}AB\) (2).

+) \(AD + CF > \frac{3}{2}AC\) (3).

Lấy (1) + (2) + (3) vế theo vế, ta được:

\(2AD + 2BE + 2CF > \frac{3}{2}AB + \frac{3}{2}BC + \frac{3}{2}AC\).

Suy ra \(2\left( {AD + BE + CF} \right) > \frac{3}{2}\left( {AB + BC + AC} \right)\).

Do đó \(AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\).

Vậy (I) đúng.

• Ta xét (II):

Trên tia AD, lấy điểm A’ sao cho DA’ = DA.

Xét ∆ADB và ∆A’DC, có:

DA = DA’,

\(\widehat {ADB} = \widehat {A'DC}\) (hai góc đối đỉnh),

BD = CD (do AD là đường trung tuyến của ∆ABC),

Do đó ∆ADB = ∆A’DC (c.g.c).

Suy ra AB = A’C (hai cạnh tương ứng).

Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được:

AA’ < AC + A’C.

Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).

Chứng minh tương tự, ta được:

+) 2BE < AB + BC (5).

+) 2CF < AC + BC (6).

Lấy (4) + (5) + (6) vế theo vế, ta được:

2AD + 2BE + 2CF < 2AC + 2AB + 2BC.

Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).

Do đó AD + BE + CF < AB + AC + BC.

Vậy (II) đúng.

Kết luận: cả (I) và (II) đều đúng.

Ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ba vị trí của khu vực A, B, C trong một trường học được mô tả như hình vẽ dưới đây.

Media VietJack

Nếu đặt ở khu vực A một thiết bị phát wifi thì cần có bán kính hoạt động là bao nhiêu để cả hai khu vực B và C đều nhận được tín hiệu?

Xem đáp án » 01/02/2024 112

Câu 2:

Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi H, J, K lần lượt là chân đường vuông góc kẻ từ I đến AB, AC, BC. Biết KI = 5 cm, BK = 10 cm, KC = 15 cm. Diện tích tam giác ABC bằng:

Xem đáp án » 01/02/2024 90

Câu 3:

Hai nhà máy được xây dựng tại hai địa điểm A và B cùng nằm về một phía của khúc sông thẳng. Lấy điểm mốc D ở phía bên kia bờ sông là điểm đối xứng của nhà máy A qua khúc sông thẳng.

Media VietJack

Tìm trên bờ sông một địa điểm C để xây dựng trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ C đến A và đến B nhỏ nhất.

Xem đáp án » 01/02/2024 86

Câu 4:

Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.

Media VietJack

Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.

Xem đáp án » 01/02/2024 83

Câu 5:

Cho tam giác ABC có \(\widehat A = \alpha \) là góc tù. Các đường trung trực của các cạnh AB và AC cắt nhau tại I. Tính số đo của góc BIC theo α ta được:

Xem đáp án » 01/02/2024 63

Câu 6:

Cho tam giác MNP có ba đường phân giác MA, NB, PC cắt nhau tại I. Vẽ IH vuông góc NP tại H. Khẳng định nào dưới đây là đúng:

Xem đáp án » 01/02/2024 63

Câu hỏi mới nhất

Xem thêm »
Xem thêm »