c) Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.
c) Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.
c) Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.
c) Do DABD = DEBD (câu a) nên AD = ED (hai cạnh tương ứng)
Do đó D nằm trên đường trung trực của AE.
Lại có BA = BE (giả thiết) nên B nằm trên đường trung trực của AE.
Suy ra BD là đường trung trực của đoạn thẳng AE nên BD ⊥ AE, hay BI ⊥ AE.
Xét DABE có AI ⊥ BE, BI ⊥ AE nên I là trực tâm của tam giác
Do đó EI ⊥ AB hay EF ⊥ AB.
Mà CA ⊥ AB (do DABC vuông tại A)
Suy ra EF // CA.
Tứ giác ACEFF có EF // CA nên là hình thang.
Lại có nên ACEFF là hình thang vuông.