30 Bài toán tính nhanh phép tính phân số (2024) có đáp án, chi tiết nhất

1900.edu.vn xin giới thiệu Bài toán tính nhanh phép tính phân số môn Toán hay, chi tiết nhất sẽ giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán tốt hơn. Mời các em tham khảo:

Bài toán tính nhanh phép tính phân số

I. Các dạng bài tập 

Dạng 1: Tổng nhiều phân số có tử số bằng nhau và mẫu của phân số sau gấp mẫu số của phân số liền trước n lần.

 Ví dụ 1:  Tính nhanh A =   1/2+ 1/4  + 1/8  +1/16  +1/32 + 1/64  

Nhận xét: Mẫu số của phân số sau gấp 2 lần mẫu số phân số liền trước

- Tính A x 2

 A x 2  = 1 + 1/2  +1/4  +1/8  +1/16+ 1/32  

- Tính A bằng cách A = A x 2 – A

Vậy  A = 1  + 1/2  +1/4  +1/8  +1/16+ 1/32  -  1/2 - 1/4  - 1/8 -1/16 - 1/32 - 1/64                                        

  A = 1 - 1/64

  A = 63/64

 Ví dụ 2: B =5/2 + 5/6 + 5/18 + 5/ 54 + 5 /162 + 5 /486

Nhận xét: Mẫu số của phân số sau gấp 3 lần mẫu số phân số liền trước

Bước 1: Tính B x 3 

B x 3 = 3 x  (5/2 + 5/6 + 5/18 + 5/ 54 + 5 /162 + 5 /486)

        = 15/2 + 5/2 + 5/6 + 5/18 + 5/ 54 + 5 /162 

Bước 2: Tính B x 3 – B

B x 3 – B = 15/2 +5/2 +5/6 +5/18 +5/54 + 5/162 -5/2 -5/6 -5/18 - 5/54 - 5 /162 - 5/486

B x (3 - 1) = B x 2 

B x 2 =15/2 - 5/486

B x 2 = 3640/486

B = 3640 / 486 : 2 = 910/243

Ví dụ 3 : (Tương tự B)  C =  1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729

 Dạng 2:  Tính tổng của nhiều phân số có tử số là n ( n > 0); mẫu số là tích của hai thừa số có hiệu bằng n và thừa số thứ 2 của mẫu phân số liền trước là thừa số thứ nhất của mẫu số liền sau:

 Ví dụ 1:    

 A  =  1/ 2x3 + 1/ 3x4 + 1/4x5 + 1/5x6

Nhận xét 3- 2 = 1 (bằng tử số)

1/2x3 = 1/2- 1/3;     1/3x4 = 1/3 – 1/4            

A = 1/2 – 1/3 + 1/3 – 1/ 4 + 1/4 - 1/5 + 1/5 – 1/6

A= 1/ 2 – 1/6

A = 1/3

 Ví dụ 2:  B = 3/ 2x5 + 3/ 5x8 + 3/ 8x11 + 3/ 11x14

B =  1/2- 1/5 + 1/ 5 – 1/8 + 1/8 – 1/11 + 1/ 11- 1/14

=1/ 2 – 1/14 = 3/7

 Dạng 3: Tính tích của nhiều phân số trong đó tử số của  phân số này bằng mẫu số của phân số kia.

 Ví dụ 1:    1991/ 1990 x 1992/ 1991 x 1993 /1992x 1994/1993 x 995/997

Rút gọn Tử số này với mẫu số kia ta được kết quả là 1994/1990 x 995/ 997

 Ví dụ 2:    (1-1/ 2) x (1- 1/3) x (1- 1/4) x (1- 1/5)

    Tính lần lượt các phép tính trong ngoặc ta được kết quả:

1/2  x 2/ 3 x 3/4 x 4/5 = 1/5

Tương tự:

Ví dụ 3:   (1- 3/ 4) x (1- 3/7) x (1- 3/10) x (1- 3/13) x (1 – 3/97) x (1- 3/100)

 Dạng 4: Vận dụng tính chất của 4 phép tính để tách, ghép ở tử số hoặc ở mẫu số nhằm tạo ra thừa số giống nhau ở cả mẫu số và tử số rồi thực hiện rút gọn biểu thức.

 Ví dụ 1:  2003 x 1999 – 2003 x 999/    2004 x 999 + 1004 

=     2003 x (1999 – 999)/  (2003 + 1) x 999 + 1004

= 2003 x 1000/ 2003 x 999  +999 +1004

= 2003 x 1000 /   2003 x 999 + 2003

= 2003 x 1000/ 2003 x 1000

= 1 ( Vì tử số bằng mẫu số )

 Ví dụ 2:  1996 x 1995 – 996/  1000 + 1996 x 1994

= 1996 x ( 1994 + 1) – 996 /  1000 + 1996 x 1994

= 1996 x 1994 + 1000/  1000 + 1996 x 1994

= 1 

II. Bài tập vận dụng

Bài 1: Tính nhanh
S = 1 + 1/2 + 1/4 + 1/8 + ..................... + 1/128 + 1/256
Phân tích: Bài này ta thấy số hạng liền sau bằng 1/2 số hạng liền trước nên ta có thể giải theo các cách sau:
 
Cách 1:
S = 1 + 1/2 + 1/4 + 1/8 + .....................1/128 + 1/256
= 1 + (1 – 1/2) + (1/2 – 1/4) + (1/4 – 1/8) + ....................... (1/128 – 1/256)
= 2 – 1/256 = 511/256
Vậy S = 511/256
 
Cách 2:
S x 2 = 2 + 1 + 1/2 + 1/4 + .................................... + 1/128
S x 2 – S = 2 – 1/ 256 = 511/256
Vậy S = 511/256
 
Bài 2: Tính nhanh
S = 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/2187
Phân tích: Bài này ta thấy số hạng liền sau bằng 1/3 số hạng liên trước nên ta có thể giải theo cách 2 như bài 1:
S x 3 = 3 + 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/729
S x 3 – S = 3 – 1/2187 = 6560/2187
Vậy S =  6560/2187 : 2 = 6560/4374
 
Bài 3: Tính nhanh
A = 1 + 2 + 4 + 8 + ..................... + 4096 + 8192
Phân tích: Bài này ta thấy số hạng liền sau gấp 2 lần số hạng liền trước. Ta có thể giải bài toán trên theo các cách sau:
 
Cách 1:
A x 2 = 2 + 4 + 8 + ....................... + 16384
A x 2 – A = 16384 – 1 = 16383
Vậy A = 16383
 
Cách 2: Ta thấy: Tổng 3 số hạng đầu là:
1 + 2 + 4 = 3 + 4
Tổng 4 số hạng đầu là:
1 + 2 + 4 + 8 = 7 + 8
Tổng 5 số hạng đầu là:
1 + 2 + 4 + 8 + 16 = 15 + 16
Theo quy luật đó ta sẽ tính được kết quả của tổng trên là:
A = 1 + 2 + 4 + 8 + ..................... + 4096 + 8192 = 8191 + 8192 = 16383
Vậy A = 16383
 
Cách 3: Nhận xét:
2 = 1 + 1
4 = (1 + 2) + 1
8 = (1 + 2 + 4) + 1
......................................................................................................................
8192 = (1 + 2 + 4 + ............... + 4096) + 1
Vậy A = 8192 – 1 + 8192 = 16383
 
Bài 4: Tính nhanh
1/1 x2 + 1/ 2 x 3 + 1/ 3 x 4 + ................. + 1/ 2013 x 2014
Phân tích: Bài này ta thấy ở mấu số là tích hai số tự nhiên liên tiếp nên ta có thể phân tích như sau:
 
1/1 x2 + 1/ 2 x 3 + 1/ 3 x 4 + ................. + 1/ 2013 x 2014
= 1/1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + ........................ + 1/2013 – 1/2014
= 1 – 1/2014 = 2013/2014
 
Bài 5: Tính nhanh
A = 1/1 x3 + 1/ 3 x 5 + 1/ 5 x 7 + ................. + 1/ 2013 x 2015
Phân tích: Bài này ta thấy giống với bài 5 chỉ khác ở chỗ ở MS là tích 2 số lể liên tiếp. Muốn đưa về phân cách phân tích như bài 5 ta phải tìm cách đưa tử số về là 2. Ta làm như sau:
 
A x 2 = 2/1 x3 + 2/ 3 x 5 + 2/ 5 x 7 + ................. + 2/ 2013 x 2015
          = 1/1 – 1/3 + 1/3 – 1/5 + 1/5 – 1/7 + .................. + 1/2013 – 1/2015
          = 1 – 1/2015 = 2014/2015
Vậy A = 2014/2015 : 2 = 2014/4030.
 
Bài 6:  Tính nhanh.
1/ 2 x (1 + 2) + 1/ 2 x (1 + 2 + 3) + ............ + 1/2 x (1 + 2 + 3 + ....... + 9)
Phân tích:  Với bài này ta phải tìm cách đưa MS về dạng tính nhanh cở bản như bài 4; 5 ở trên. Ta có thể nhận thấy thừa số thứ 2 ở mẫu số là tổng các số tự nhiên liên tiếp nên ta có thể dùng cách tính tổng các số tự nhiên liên tiếp để có thể đưa về dạng tính nhanh cơ bản. Ta có thể làm  như sau:
MS = 2 x (1 + 2) + 2 x (1 + 2 + 3) + ............ + 2 x (1 + 2 + 3 + ....... + 9)
= 2 x (2 x 3)/2 + 2x (3 x 4)/2 + ................ + 2 x (9 x 10)/2
2 x3 + 3 x 4 + ...................... + 9 x 10
Vậy TS/MS = 1/2x3 + 1/3x4 + ............... + 1/9x10
= 1/2 – 1/10 = 2/5
 
Bài 7: Tính nhanh
M = 1 x 2  +  2 x 3 + 3 x 4 + .................... + 201 x 202
 
Phân tích: Bài này ta thấy mỗi số hạng là tích hai số tự nhiên liên tiếp. Để tạo ra các nhóm thừa số có thể loại trừ hết cho nhau ta phân tích như sau:
M x 3 = 1 x 2 x (3 - 0)  +  2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .................... + 201 x 202 x (203 – 200) = 1 x 2 x 3 + 2 x 3 x 4 – 1 x 2 x 3 + 3 x 4 x 5 – 2 x 3 x 4 +  ..................... + 201 x 202 x 203 – 200 x 201 x 202
= 201 x 202x 203 = 8242206
Vậy M = 8242206 : 3 = 2747402
 
Bài 8: Tính nhanh
N = 1 x 2  x 3 +  2 x 3 x 4 + 3 x 4 x 5 + .................... + 100 x 101 x 102
Phân tích: Tương tự ta thấy các số hạng trong tổng là tích ba số tự nhiên liên tiếp. Vì vậy ta có thểphân tích như sau:
N x 4 = 1 x 2  x 3 x (4 - 0)+  2 x 3 x 4 x (5 - 1)+ 3 x 4 x 5 x (6 – 2) + .................... + 100 x 101 x 102 x (103 – 99) = 1 x 2  x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2  x 3 x 4 + 3 x 4 x 5 x 6 - 2 x 3 x 4 x 5 + ................. + 100 x 101 x 102 x 103 – 99 x 100 x 101 x 102 = 100 x 101 x 102 x 103 = 106110600
Vậy N = 106110600 : 4 = 26527650
 
Bài 9: Tính nhanh
B = 1 x 1 + 2 x 2 + 3 x 3 + .............. + 100 x 100
Phân tích: Bài này thực ra là bài thuộc dạng bài 7 và 8 nhưng ta phải tìm cách đưa về dạng cơ bản trên. Ta có thể phân tích như sau:
B = 1 x 1 + 2 x 2 + 3 x 3 + .............. + 100 x 100 = 1 x (2 - 1) + 2 x (3 - 1) + 3 x (4 - 1) + .................. + 100 x (101 – 1) = 1 x 2 – 1 + 2 x 3 – 2 + 3 x 4 – 3 + ..................... + 100 x 101 – 100 = (1 x 2 + 2 x 3 + ............ + 100 x 101) – (1 + 2 + 3 + ................ + 100) = (100 x 101 x 102) : 3 - (101 x 100 : 2)  = 343400 – 5050 = 338350
   
   Bài 10:  Tính nhanh.
Tử số = 2012 + 2011/2 + 2010/3 + ................ + 2/2011 + 1/2012
Mẫu số = 1/2 + 1/3 + 1/4 + ........................ + 1/2012 + 1/2013
 
Phân tích:  Với bài này ta tìm cách đưa TS về dạng tích 2 thừa số trong đó có 1 thừa số chính là mẫu số. Ta có thể làm như sau:
TS = (1 + 1 + .......... + 1) + 2011/2 + ................ + 2/2011 + 1/2012
            (2012 chữ số 1)
= (1 + 2011/2) + ...........+ (1 + 2/2011) + (1 + 1/2012) + 1    
=  2013/2 + .......... + 2013/2011 + 2013/2012 + 2013/2013
=  2013 x ( 1/2 + .......... + 1/2011 + 1/2012 + 1/2013)
TS/MS = 2013
 
Bài 11:  Tính nhanh.
TS = 1 + (1 + 2) + (1 + 2 + 3) + .............. + (1 + 2 + 3 + .......... + 2014)
MS = 1 x 2014 + 2 x 2013 + .................. + 2013 x 2 + 2014 x 1
Phân tích:  Với dạng bài ta nhận thấy ở TS có 2014 số 1; 2013 số 2 ............. Vì vậy ta có thể giải như sau:
TS = (1 + 1 + .... + 1) + (2 + 2 + ....... + 2) + ....... + (2013 + 2013) + 2014
         (2014 chữ số 1)     (2013 chữ số 2)
= 1 x 2014 + 2 x 2013 + .................. + 2013 x 2 + 2014 x 1
Vậy TS/MS = 1
 
Bài 12:  Tính nhanh.
TS = 1/51 + 1/52 + 1/53 + ............. + 1/100
MS = 1/1x2 + 1/3x4 + .......... + 1/99x100
Phân tích:  Với bài này ta có thể dùng cách thêm bớt để đưa MS về giống với TS. Ta có thể làm như sau:
MS = 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100
= (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)
= (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1/2 + 1/2 + 1/4 + 1/4 + 1/6 + 1/6 ....... 1/100 + 1/100) = (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2  + 1/3 + ....... 1/50 ) = 1/51 + 1/52 + 1/53 + ............. + 1/100
Vậy TS/MS = 1
 
Bài 13:  Tính nhanh.
TS = 1 + 1/3 + 1/5 +  .............+ 1/97 + 1/99
MS = 1/1x99 + 1/3x97 + .......... + 1/49x51
Phân tích:  Với dạng bài ta thấy tương tự như các bài trên ta tìm cách đưa TS và MS về tích 2 thừa số và có 1 thừa số chung. Ta có thể làm như sau:
TS = (1 + 1/99) + (1/3 + 1/97) + ........................ + (1/49 + 1/51)
= 100/ 1x99 + 100/3x97 + .......................... + 100/49X51
= 100/ (1/1x99 + 1/3x97 + .......... + 1/49x51)
Vậy TS/MS = 100
 
Bài 14:  Tính nhanh.
TS = 1/2 + 1/3 + 1/4 +  .............+ 1/99 + 1/100
MS = 1/99 + 2/98 + .......... + 99/1
Phân tích:  Với dạng bài ta phân tích MS như sau:
MS = (100 – 99)/99 + (100 - 98)/98 + ............+ (100 – 2)/2 + (100 - 1)/1
= 100/99 – 1 + 100/98 – 1 + ..................... + 100/2 – 1 + 100/1 – 1
= 100/99 + 100/98 + .................. + 100/2 + 100/1 – 1 x 99
= 100/99 + 100/98 + .................. + 100/2 + 1
= 100/99 + 100/98 + .................. + 100/2 + 100/100
= 100 x (1/99 + 1/98 + ........................ + 1/2 + 1/100)
= 100 x (1/2 + 1/3 + ........................ + 1/99 + 1/100)
Vậy TS/MS = 1/100
 
Xem thêm các dạng bài tập hay, có đáp án:
 
 
 
 
 
 
 
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!