Tìm cực trị của hàm số dựa vào bảng biến thiên
1. Phương pháp giải
Dựa vào bảng biến thiên để tìm cực trị của hàm số:
Hàm số y = f(x) có đạo hàm đổi dấu từ âm sang dương tại x = x0 thì hàm số đạt cực tiểu tại x = x0
Hàm số y = f(x) có đạo hàm đổi dấu từ dương sang âm tại x = x0 thì hàm số đạt cực đại tại x = x0
2. Ví dụ minh họa
Ví dụ 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng:
A. -4.
B. 0.
C. 1.
D. -3.
Lời giải
Chọn D
Ta thấy đạo hàm đổi dấu từ dương sang âm tại x = 0 nên hàm số đại cực đại tại x = 0, giá trị cực đại bằng -3
Ví dụ 2: Cho hàm số y = f(x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số đã cho
A. 3.
B. 2.
C. 1.
D. 4.
Lời giải
Chọn A
Dựa vào bảng biến thiên thì hàm số số có 1 điểm cực tiểu và 2 điểm cực đại
Vậy số điểm cực trị của hàm số đã cho là 3.
Ví dụ 3: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng
A. 2.
B. -3.
C. -1.
D. -2.
Lời giải
Chọn D
Dựa vào bảng biến thiên thì giá trị cực đại của hàm số là -2.
3. Bài tập vận dụng (có đáp án)
Bài 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho bằng:
Lời giải:
Chọn B
Dựa vào bảng biến thiên thì điểm cực đại của hàm số đã cho là .
Bài 2: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
A. 0.
B. -1.
C. 2.
D. 3.
Lời giải:
Chọn B
Dựa vào bảng biến thiên ta thấy giá trị cực tiểu là -1
Bài 3: Cho hàm số y = f(x) có bảng biến thiên như sau
Mệnh đề nào sau đây đúng?
A. Hàm số có đúng một cực trị.
B. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.
C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1.
D. Hàm số có giá trị cực tiểu bằng 1.
Lời giải:
Chọn B
Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.
Bài 4: Cho hàm số y = f(x) có bảng biến thiên như sau.
Hỏi hàm số có bao nhiêu điểm cực trị?
A. 0
B. 1
C. 3
D. 2
Lời giải:
Chọn B
Dựa vào bảng biến thiên, ta thấy hàm số có duy nhất 1 điểm cực trị là x = 5
Bài 5: Cho hàm số f(x) có bảng xét dấu
Hàm số đạt cực tiểu tại:
A. x = -1.
B. x = 0.
C. x = 1.
D. x = 2.
Lời giải:
Chọn B
Hàm số đạt cực tiểu tại điểm y' đổi dấu từ âm sang dương
Do đó hàm số đạt cực tiểu tại x = 0
Bài 6: Cho hàm số y = f(x) liên tục trên R và có bảng xét dấu đạo hàm như sau:
Hỏi hàm số y = f(x) có bao nhiêu điểm cực trị?
A. 2.
B. 1.
C. 3.
Lời giải:
Chọn A
Vì hàm số y = f(x) liên tục trên R và f'(x) đổi dấu 2 lần nên hàm số đó có 2 điểm cực trị.
Bài 7: Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại:
A. x = 0.
B. x = 1.
C. x = 2.
D. x = -1.
Lời giải:
Chọn A
Nhìn vào bảng biến thiên ta thấy f'(x) đổi dấu từ âm sang dương khi qua x = 0 nên hàm số f(x) đạt cực tiểu tại x = 0.
Bài 8: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Khẳng định nào sau đây là đúng?
A. Hàm số có ba giá trị cực trị.
B. Hàm số có ba điểm cực trị.
C. Hàm số có hai điểm cực trị.
D. Hàm số đạt cực đại tại điểm x = 1.
Lời giải:
Chọn B
Từ bảng biến thiên ta thấy f'(x) đổi dấu 3 lần nên hàm số có 3 điểm cực trị.
Bài 9: Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)(x - 2)2 (x - 3)3(x + 5)4. Hỏi hàm số y = f(x) có mấy điểm cực trị?
A. 5.
B. 3.
C. 4.
D. 2.
Lời giải:
Chọn D
Ta thấy f'(x) đổi dấu 2 lần nên hàm số y = f(x) có 2 điểm cực trị.
Bài 10: Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Hàm số y = f(3x + 1)có bao nhiêu điểm cực tiểu?
A. 0.
B. 2.
C. 1.
D. 3.
Lời giải:
Chọn C
Ta có BBT sau:
Vậy hàm số đạt cực tiểu tại .
Xem thêm các dạng bài tập liên quan khác:
20 bài tập Tìm cực trị của hàm số dựa vào đồ thị (2024) cực hay, có lời giải
20 Bài tập tìm cực trị của hàm hợp (2024) cực hay, có đáp án
20 Bài tập Tìm cực trị của hàm chứa căn thức (2024) cực hay, có đáp án
30 Bài tập Tìm cực trị của hàm chứa dấu giá trị tuyệt đối (2024) cực hay, có lời giải
20 Bài tập Tìm cực trị của hàm bậc ba (2024) cực hay, có lời giải