Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án (Vận dụng)
-
199 lượt thi
-
5 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.
Biết f(c) = c. Giá trị của b là:
Hướng dẫn giải
Đáp án đúng là: D
Quan sát đồ thị, ta thấy parabol cắt trục hoành tại đỉnh của parabol hay parabol cắt trục hoành tại một điểm duy nhất.
Nghĩa là, phương trình ax2 + bx + c = 0 có nghiệm kép.
Do đó ∆ = 0.
Suy ra b2 – 4ac = 0 (1)
Ta có f(c) = c.
Suy ra ac2 + bc + c = c.
Khi đó c(ac + b) = 0.
Vì vậy ac + b = 0 (vì c ≠ 0).
Do đó \(c = - \frac{b}{a}\) (vì a ≠ 0).
Thay \(c = - \frac{b}{a}\) vào (1) ta được: \({b^2} - 4.a.\left( { - \frac{b}{a}} \right) = 0\).
Khi đó b2 + 4b = 0 Û b(b + 4) = 0.
Vì vậy b = 0 hoặc b = –4.
Vì b ≠ 0 nên ta nhận b = –4.
Vậy ta chọn phương án D.
Câu 2:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị đi qua điểm A(0; 6). Giá trị biểu thức P = abc bằng
Hướng dẫn giải
Đáp án đúng là: A
Ta có giá trị nhỏ nhất của hàm số bằng 4 tại x = 2.
Tức là đỉnh S(2; 4) và a > 0.
Suy ra 4 = a.22 + b.2 + c.
Do đó 4a + 2b + c = 4 (1)
Ta có xS = 2.
Suy ra \( - \frac{b}{{2a}} = 2\).
Do đó –b = 4a (2)
Đồ thị hàm số đi qua điểm A(0; 6).
Suy ra 6 = a.02 + b.0 + c.
Do đó c = 6 (3)
Thay (2), (3) vào (1), ta được: –b + 2b + 6 = 4.
Suy ra b = –2.
Với b = –2, thay vào (2) ta được 4a = 2.
Suy ra \(a = \frac{1}{2}\) (thỏa mãn a > 0).
Vì vậy ta có \(a = \frac{1}{2}\), b = –2, c = 6.
Khi đó P = abc = \(\frac{1}{2}.\left( { - 2} \right).6 = - 6\).
Vậy ta chọn phương án A.
Câu 3:
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có dạng y = ax2 + bx + c, với a = m, b = –2m, c = –m2 – 2 (m ≠ 0).
Suy ra b’ = –m.
∆ = b’2 – ac = (–m)2 – m.(–m2 – 2) = m3 + m2 + 2m.
Đỉnh S có tọa độ:
⦁ \[{x_S} = - \frac{{b'}}{a} = - \frac{{ - m}}{m} = 1\];
⦁ \({y_S} = - \frac{{\Delta '}}{a} = - \frac{{{m^3} + {m^2} + 2m}}{m} = - \frac{{m\left( {{m^2} + m + 2} \right)}}{m}\)
Do đó yS = –m2 – m – 2 (vì m ≠ 0).
Suy ra tọa độ đỉnh S(1; –m2 – m – 2).
Vì đỉnh S nằm trên đường thẳng y = x – 3 nên ta có:
–m2 – m – 2 = 1 – 3.
Suy ra –m2 – m = 0
Khi đó m = 0 (loại) hoặc m = –1 (thỏa mãn).
Vì vậy m ∈ (–3; 3).
Vậy ta chọn phương án C.
Câu 4:
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học phát hiện ra rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ có cân nặng P(n) = 360 – 10n. Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất?
Hướng dẫn giải
Đáp án đúng là: D
Gọi T là trọng lượng tất cả số con cá trên một đơn vị diện tích của mặt hồ.
Vì trên một diện tích của mặt hồ có n con cá nên ta có:
T = (360 – 10n).n = –10n2 + 360n.
Hàm số T có dạng T = an2 + bn + c, với a = –10, b = 360, c = 0.
∆ = b2 – 4ac = 3602 – 4.(–10).0 = 129 600.
Vì a = –10 < 0 nên hàm số đạt giá trị lớn nhất bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(n = \frac{{ - b}}{{2a}}\).
Khi đó \({T_{\max }} = \frac{{ - 129\,\,600}}{{4.\left( { - 10} \right)}} = 3\,\,240\) khi \(n = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\).
Vậy phải thả 18 con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất.
Câu 5:
Hướng dẫn giải
Đáp án đúng là: B
Gọi A và B là hai điểm ứng với chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\) và có chiều rộng d = 5 (m) nên ta có: AB = 5.
Gọi I là trung điểm AB. Suy ra IA = IB = \(\frac{{AB}}{2} = \frac{5}{2}\) (m).
Hàm số đã cho có dạng y = ax2 + bx + c, với \(a = - \frac{1}{2}\), b = c = 0.
Vì b = 0 nên Oy là trục đối xứng của parabol.
Do đó trung điểm I của đoạn thẳng AB nằm trên Oy.
Khi đó điểm I có hoành độ bằng 0.
Vì IA = IB = \(\frac{5}{2}\) nên ta có \({x_A} = - \frac{5}{2},\,\,{x_B} = \frac{5}{2}\).
Với \({x_A} = - \frac{5}{2}\), ta có \({y_A} = - \frac{1}{2}.{\left( { - \frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).
Suy ra tọa độ \(A\left( { - \frac{5}{2}; - \frac{{25}}{8}} \right)\).
Với \({x_B} = \frac{5}{2}\), ta có \({y_B} = - \frac{1}{2}.{\left( {\frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).
Suy ra tọa độ \(B\left( {\frac{5}{2}; - \frac{{25}}{8}} \right)\).
Vì vậy chiều cao h của cổng là:
h = OI = |yA| = |yB| = \(\left| { - \frac{{25}}{8}} \right| = \frac{{25}}{8} = 3,125\) (m).
Vậy ta chọn phương án B.