Trắc nghiệm Toán 10 Bài 6. Ba đường Conic có đáp án
Trắc nghiệm Toán 10 Bài 6. Ba đường Conic có đáp án
-
254 lượt thi
-
15 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Elip \[\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\] có độ dài trục lớn bằng:
Hướng dẫn giải
Đáp án đúng là: B
Tổng quát: Phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right),\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \[\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\] \[ \Rightarrow \left\{ \begin{array}{l}{a^2} = 36\\{b^2} = 9\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 3\end{array} \right.\,\,\]
\[ \Rightarrow \,\,{A_1}{A_2}\]= 2.6 = 12.
Câu 2:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Hướng dẫn giải
Đáp án đúng là: D
Phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right),\) có độ dài trục lớn B1B2 = 2b.
Xét \(\left( E \right):4{x^2} + 16{y^2} = 1\)\( \Leftrightarrow \frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)
\( \Leftrightarrow \)\(\left\{ \begin{array}{l}{a^2} = \frac{1}{4}\\{b^2} = \frac{1}{{16}}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{1}{4}\end{array} \right.\,\)\( \Rightarrow \,\,\,{B_1}{B_2} = 2.\frac{1}{4} = \frac{1}{2}.\)
Câu 3:
Elip \[\left( E \right):{x^2} + 4{y^2} = 16\] có độ dài trục lớn bằng:
Hướng dẫn giải
Đáp án đúng là: D
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \[\left( E \right):{x^2} + 4{y^2} = 16\]\[ \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 4\end{array} \right.\]\[ \Rightarrow \]a = 4\( \Rightarrow \,{A_1}{A_2} = \)2.4 = 8.
Câu 4:
Trong các phương trình dưới đây là phương trình elip?
Hướng dẫn giải
Đáp án đúng là: D
Xét phương trình \[\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{144}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{{12}^2}}} = 1\] có dạng phương trình phương trình elip với a = 5, b = 12 nhưng không thỏa mãn a > b. Do đó (E) không là elip.
Xét phương trình \[\left( F \right):\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{4} = 1\] không có dạng của phương trình elip.
Xét phương trình \[\left( G \right):\frac{{{y^2}}}{4} = x\]không có dạng của phương trình elip.
Xét phương trình \[\left( H \right):4{x^2} + 25{y^2} = 1 \Leftrightarrow \frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{25}}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{{\left( {\frac{1}{2}} \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {\frac{1}{5}} \right)}^2}}} = 1\] có dạng của phương trình elip với a = \(\frac{1}{4}\), b = \(\frac{1}{5}\) thỏa mãn \(\frac{1}{4} > \frac{1}{5} > 0\). Do đó D đúng.
Câu 5:
Hướng dẫn giải
Đáp án đúng là: C
Phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \) 2a và độ dài trục bé là \({B_1}{B_2} = \)2b.
Xét \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\)\( \Leftrightarrow \frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{4} = 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 64\\{b^2} = 4\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 8\\b = 2\end{array} \right.\) (thỏa mãn)
\( \Rightarrow \,\,{A_1}{A_2} + {B_1}{B_2} = \)2.8 + 2.2 = 20.
Câu 6:
Khái niệm nào sau đây định nghĩa về hypebol?
Hướng dẫn giải
Đáp án đúng là: B
Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0). Hypebol (H) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c;
Câu 7:
Hướng dẫn giải
Đáp án đúng là: B
Dạng chính tắc của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
Câu 8:
Hướng dẫn giải
Đáp án đúng là: A
Nếu \({c^2} = {a^2} + {b^2}\) thì (H) có các tiêu điểm là \({F_1}\)(c; 0), \({F_2}\)(– c; 0).
Câu 9:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng về tỉ số \(\frac{c}{a}\)?
Hướng dẫn giải
Đáp án đúng là: C
Xét phương trình hypebol \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\). Khi đó \(\left\{ \begin{array}{l}{a^2} = 4\\{b^2} = 9\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)
⇒ c2 = a2 + b2 = 22 + 32 = 13 ⇔ c = \(\sqrt {13} \)
⇒ \(\frac{c}{a} = \frac{{\sqrt {13} }}{2}\).
Câu 10:
Hướng dẫn giải
Đáp án đúng là: D
Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), khi đó:
Tọa độ các đỉnh nằm trên trục thực là \({A_1}\left( {a;0} \right)\), \({A_1}\left( { - a;0} \right)\)và tọa độ các đỉnh nằm trên trục ảo là \({B_1}\left( {0;b} \right)\), \({A_1}\left( {0; - b} \right)\). Do đó A đúng, B đúng.
Với c2 = a2 + b2 (c > 0), độ dài tiêu cự là 2c. Do đó C đúng.
Với c2 = a2 + b2 (c > 0), độ dài trục lớn là 2a. Do đó D sai.
Câu 11:
Định nghĩa nào sau đây là định nghĩa đường parabol?
Hướng dẫn giải
Đáp án đúng là: A
Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
Câu 12:
Hướng dẫn giải
Đáp án đúng là: A
Dạng chính tắc của Parabol là \({y^2} = 2px\)(p > 0).
Câu 13:
Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
Hướng dẫn giải
Đáp án đúng là: A
Khẳng định sai: Trục đối xứng của parabol là trục Oy.
Cần sửa lại: Trục đối xứng của parabol là trục Ox.
Câu 14:
Đường thẳng nào là đường chuẩn của parabol \[{y^2} = 2x\]
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của parabol \(\left( P \right):{y^2} = 2px\)
\[ \Rightarrow \]2p = 2 \( \Rightarrow \) p =1. Phương trình đường chuẩn là \(x = - \frac{p}{2}\)=\[ - \frac{1}{2}\] .
Câu 15:
Hướng dẫn giải
Đáp án đúng là: D
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có tiêu cự là 2c
Xét \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 4\end{array} \right.\]
\[ \Rightarrow {c^2} = {a^2} - {b^2}\]= 16 – 4 = 12\[ \Rightarrow \]c = \[\sqrt {12} \]\[ \Rightarrow \]2c = 2\[\sqrt {12} \].