Hoặc
5 câu hỏi
Bài 4 trang 122 SBT Toán 11 Tập 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh. a) MN song song với các mặt phẳng (SBC) và (SAD); b) SB song song với (MNP); c) SC song song với (MNP). d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD).
Bài 3 trang 122 SBT Toán 11 Tập 1. Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM = 13AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh. a) NG // (SCD); b) MG // (SCD).
Bài 5 trang 122 SBT Toán 11 Tập 1. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.
Bài 1 trang 121 SBT Toán 11 Tập 1. Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD).
Bài 2 trang 121 SBT Toán 11 Tập 1. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O’. a) Chứng minh OO’ song song với các mặt phẳng (ADF) và (BCE). b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh AF, AD sao cho AM = 13AF, AN = 13AD Chứng minh MN // (DCEF).