Giải Toán 7 Bài 20: Tỉ lệ thức
A. Các câu hỏi trong bài
Cờ đỏ sao vàng là quốc kì của nước Cộng hòa xã hội chủ nghĩa Việt Nam. Lá cờ có dạng một hình chữ nhật màu đỏ với hình ngôi sao năm cánh màu vàng nằm ở chính giữa.
Nếu tìm hiểu kĩ hơn em sẽ thấy dù lớn hay nhỏ thì các lá cờ đều có một điểm chung về kích thước. Điểm chung đó là gì nhỉ?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Điểm chung về kích thước giữa các lá quốc kì Việt Nam chính là tỉ số giữa chiều rộng và chiều dài của chúng luôn không đổi và bằng 2 : 3.
Giải Toán 7 trang 5 Tập 2
Lá quốc kì cắm trên đỉnh cột cờ Lũng Cú, Hà Giang có chiều rộng 6 m, chiều dài 9 m. Lá quốc kì bố Linh treo tại nhà mỗi dịp lễ có chiều rộng 0,8 m, chiều dài 1,2 m.
a) Tính tỉ số giữa chiều rộng và chiều dài của mỗi lá cờ. Viết kết quả này dưới dạng phân số tối giản.
b) So sánh hai tỉ số nhận được.
Lời giải:
a) Tỉ số giữa chiều rộng và chiều dài của lá quốc kì cắm trên đỉnh cột cờ Lũng Cú, Hà Giang là:
6 : 9 =
Tỉ số giữa chiều rộng và chiều dài của lá quốc kì bố Linh treo ở nhà vào các dịp lễ là:
0,8 : 1,2 = .
b) Tỉ số chiều rộng và chiều dài ở hai lá cờ trên là bằng nhau.
Luyện tập 1 trang 5 Toán 7 Tập 2: Tìm các tỉ số bằng nhau trong các tỉ số sau rồi lập tỉ lệ thức tương ứng:
4 : 20; 0,5 : 1,25; .
Lời giải:
Ta có:
4 : 20 = ;
0,5 : 1,25 = ;
.
Vậy ta tìm được tỉ số bằng nhau là: 0,5 : 1,25 = .
Do đó, ta có tỉ lệ thức: .
Tranh luận trang 5 Toán 7 Tập 2:
Tròn: “Tỉ lệ thức là một đẳng thức giữa hai phân số mà thôi.”
Vuông: “Điều này có đúng không nhỉ?”
Em hãy giúp Vuông trả lời câu hỏi trên nhé!
Lời giải:
Điều này là không đúng vì tỉ lệ thức là đẳng thức của hai tỉ số chứ không phải hai phân số .
Khi là tỉ số thì a, b, c, d ∈ ℚ; b, d ≠ 0 còn khi là phân số thì a, b, c, d ∈ ℤ; b, d ≠ 0.
Giải Toán 7 trang 6 Tập 2
Vận dụng 1 trang 6 Toán 7 Tập 2:
Mặt sân cỏ trong sân vận động Quốc gia Mỹ Đình có dạng hình chữ nhật có chiều dài 105 m và chiều rộng 68 m. Nam vẽ mô phỏng mặt sân cỏ này bằng một hình chữ nhật có chiều dài 21 cm và chiều rộng 13,6 cm. Hỏi Nam đã vẽ mô phỏng mặt sân cỏ đúng tỉ lệ thực tế hay chưa?
Lời giải:
Nam sẽ vẽ đúng tỉ lệ nếu tỉ số chiều rộng của hình chữ nhật so với chiều rộng sân bằng tỉ số chiều dài hình chữ nhật so với chiều dài sân.
Đổi 21 cm = 0,21 m; 13,6 cm = 0,136 m.
Tỉ số chiều rộng của hình chữ nhật Nam vẽ so với chiều rộng sân là:
0,136 : 68 =
Tỉ số chiều dài của hình chữ nhật Nam vẽ so với chiều dài sân là:
0,21 : 105 =
Vì tỉ số chiều rộng của hình chữ nhật so với chiều rộng sân bằng tỉ số chiều dài hình chữ nhật so với chiều dài sân nên Nam đã vẽ đúng tỉ lệ.
Quay trở lại tỉ lệ thức tìm được ở HĐ1: , em hãy tính các tích chéo 6 . 1,2 và 9 . 0,8 rồi so sánh kết quả.
Lời giải:
Ta có:
6 . 1,2 = 7,2;
9 . 0,8 = 7,2.
Do đó, 6 . 1,2 = 9 . 0,8 = 7, 2.
Từ đẳng thức 2 . 6 = 3 . 4, ta có thể suy ra những tỉ lệ thức nào?
Lời giải:
Giả sử ta có tỉ lệ thức . Khi đó a.d = b.c
+) Chọn a = 2 thì d = 6; chọn b = 3 thì c = 4 ta có tỉ lệ thức: ;
+) Chọn a = 2 thì d = 6; chọn b = 4 thì c = 3 ta có tỉ lệ thức: ;
+) Chọn a = 6 thì d = 2; chọn b = 3 thì c = 4 ta có tỉ lệ thức: ;
+) Chọn a = 6 thì d = 2; chọn b = 4 thì c = 3 ta có tỉ lệ thức: .
Vậy ta lập được các tỉ lệ thức: ;;;.
Luyện tập 2 trang 6 Toán 7 Tập 2:
Lập tất cả các tỉ lệ thức có thể được từ đẳng thức 0,2 . 4,5 = 0,6 . 1,5.
Lời giải:
Từ đẳng thức 0,2 . 4,5 = 0,6 . 1,5 (cùng bằng 0,9) ta có thể suy ra những tỉ lệ thức:
; ; ; .
Giải Toán 7 trang 7 Tập 2
Vận dụng 2 trang 7 Toán 7 Tập 2:
Để gói 10 chiếc bánh chưng, bà Nam cần 5 kg gạo nếp. Nếu bà muốn gói 45 chiếc bánh chưng cùng loại gửi cho người dân vùng lũ thì bà cần bao nhiêu kilôgam gạo nếp?
Lời giải:
Gọi x (kg) là số kg gạo nếp cần để gói 45 chiếc bánh chưng.
Ta có tỉ lệ thức: . Suy ra,
Vậy cần 22,5 kg gạo nếp để gói 45 chiếc bánh chưng.
B. Bài tập
Bài 6.1 trang 7 Toán 7 Tập 2: Thay tỉ số sau đây bằng tỉ số giữa các số nguyên:
a) ;
b) 1,3 : 2,75;
c) .
Lời giải:
a) Ta có:
Vậy tỉ số được thay bởi tỉ số hai số nguyên là 105 : 32.
b) Ta có: 1,3 : 2,75 =
Vậy tỉ số 1,3 : 2,75 được thay bởi tỉ số hai số nguyên là 26 : 55.
c) Ta có: .
Vậy tỉ số được thay bởi tỉ số hai số nguyên là (–8) : 5.
Bài 6.2 trang 7 Toán 7 Tập 2: Tìm các tỉ số bằng nhau trong các tỉ số sau rồi lập tỉ lệ thức:
12 : 30; ; 2,5 : 6,25.
Lời giải:
Ta có: 12 : 30 = ;
;
2,5 : 6,25 = .
Suy ra, ta có hai tỉ số bằng nhau là 12 : 30 và 2,5 : 6,25 (cùng bằng ).
Tỉ lệ thức lập được là: .
Bài 6.3 trang 7 Toán 7 Tập 2: Tìm x trong các tỉ lệ thức sau:
a) ;
b) .
Lời giải:
a)
Áp dụng tính chất tỉ lệ thức ta có:
x . 4 = (–3).6
x . 4 = –18
x = (–18) : 4
x =
Vậy x = .
b)
Áp dụng tính chất tỉ lệ thức ta có:
5 . (–20) = x . 15
15x = –100
x = (–100) : 15
x =
Vậy x = .
Bài 6.4 trang 7 Toán 7 Tập 2: Lập tất cả các tỉ lệ thức có thể được từ đẳng thức 14 . (–15) = (–10) . 21.
Lời giải:
Từ đẳng thức 14 . (–15) = (–10) . 21 (cùng bằng –210) ta có thể lập được các tỉ lệ thức sau:
; ; ; .
Bài 6.5 trang 7 Toán 7 Tập 2: Để pha nước muối sinh lí, người ta cần pha theo đúng tỉ lệ. Biết rằng cứ 3 lít nước tinh khiết thì pha với 27 g muối. Hỏi nếu có 45 g muối thì cần pha với bao nhiêu lít nước tinh khiết để được nước muối sinh lí?
Lời giải:
Gọi x (l) là số lít nước tính khiết để hòa tan 45 g muối để thu được nước muối sinh lí.
Ta có tỉ lệ thức: .
Suy ra,
Vậy cần 5 lít nước tinh khiết để hòa tan 45 g muối để thu được nước muối sinh lí.
Để cày hết một cánh đồng trong 14 ngày phải sử dụng 18 máy cày. Hỏi muốn cày hết cánh đồng đó trong 12 ngày thì phải sử dụng bao nhiêu máy cày (biết rằng năng suất của các máy cày là như nhau)?
Lời giải:
Gọi x (máy cày) là số mày cày cần để cày hết một cánh đồng trong 12 ngày.
Vì năng suất của các máy cày là như nhau và cùng cày trên một cánh đồng nên ta có:
14 . 18 = 12 . x
Suy ra,
Vậy cần 21 máy cày để cày hết cánh đồng trong 12 ngày.
Xem thêm lời giải bài tập SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 21: Tính chất của dãy tỉ số bằng nhau