Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau: a) Bắt đầu một hình vuông H¬0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nh

Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau:

a) Bắt đầu một hình vuông H­0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình H1 (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của H1 thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình H2 (xem Hình 6c). Tiếp tục quá trình này ta nhận được một dãy hình Hn(n = 1, 2, 3, ...).

Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau: a) Bắt đầu một hình vuông H¬0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình H1 (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của H1 thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình H2 (xem Hình 6c). Tiếp tục quá trình này ta nhận được một dãy hình Hn(n = 1, 2, 3, ...). (ảnh 1)

Ta có: H1 có 5 hình vuông, mỗi hình vuông có cạnh bằng  13;

H2 có 5.5 = 52 hình vuông, mỗi hình vuông có cạnh bằng  13.13=132;...

Từ đó, nhận được Hn có 5n hình vuông, mỗi hình vuông có cạnh bằng  13n.

a) Tính diện tích Sn của Hn và tính lim Sn.

Trả lời

a) Diện tích Sn của Hn là  Sn=5n.13n.13n=5n.132n=59n

Khi đó  limSn=lim59n=0.

Câu hỏi cùng chủ đề

Xem tất cả