Vẽ đồ thị các hàm số sau: a) f(x) = x^2 khi x <= 2 và = ( x + 2 ) khi x > 2
Bài 2 trang 45 SBT Toán 10 Tập 1: Vẽ đồ thị các hàm số sau:
a)
b) f(x) = |x + 3| – 2.
Bài 2 trang 45 SBT Toán 10 Tập 1: Vẽ đồ thị các hàm số sau:
a)
b) f(x) = |x + 3| – 2.
a) + Vẽ đồ thị hàm số g(x) = x2 và giữ lại phần đồ thị ứng với x ≤ 2:
Đồ thị hàm số g(x) = x2 là một parabol có đỉnh là gốc tọa độ O, trục đối xứng là trục Oy, đồ thị có bề lõm hướng lên trên, đi qua các điểm (1; 1), (– 1; 1), (2; 4), (– 2; 4).
Ta giữ lại phần đồ thị nằm bên trái đường thẳng x = 2:
+ Vẽ đồ thị hàm số h(x) = x + 2 và giữ lại phần đồ thị ứng với x > 2.
Đồ thị hàm số h(x) = x + 2 là một đường thẳng đi qua hai điểm (0; 2) và (– 2; 0).
Ta giữ lại phần đường thẳng nằm bên phải đường thẳng x = 2.
Ta được đồ thị cần vẽ như hình sau:
b) Với x + 3 ≥ 0 ⇔ x ≥ – 3, ta có: |x + 3| – 2 = x + 3 – 2 = x + 1.
Với x + 3 < 0 ⇔ x < – 3, ta có: |x + 3| – 2 = – (x + 3) – 2 = – x – 3 – 2 = – x – 5.
Khi đó ta có: .
Ta vẽ đồ thị hàm số g(x) = x + 1 và giữ lại phần đồ thị ứng với x ≥ – 3: Đồ thị hàm số g(x) = x + 1 là đường thẳng đi qua hai điểm (0; 1) và (– 1; 0).
Ta vẽ đồ thị hàm số h(x) = – x – 5 và giữ lại phần đồ thị ứng với x < – 3: Đồ thị hàm số h(x) = – x – 5 là đường thẳng đi qua hai điểm (– 5; 0) và (– 3; – 2).
Ta được đồ thị của hàm số cần vẽ như hình sau:
Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Hệ bất phương trình bậc nhất hai ẩn
Bài 1: Giá trị lượng giác của góc từ 0° đến 180°