Câu hỏi:
01/04/2024 58Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
A. 720
B. 710
C. 820
D.280
Trả lời:
Đặt x=23. Số các số cần lập có dạng với a;b;c;d ∈{1;x;4;5;6;7} có số như vậy
Mặt khác khi hoán vị hai số 2 và 3 ta được thêm một số thỏa yêu cầu bài toán.
Vậy có 360.2 = 720 số thỏa yêu cầu bài toán.
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên Gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 2:
Cho tập A={1;2;3;4;5;6;7;8}. Có bao nhiêu tập con của A chứa số 2 mà không chứa số 3
Câu 3:
Xếp 3 bi đỏ có bán kính khác nhau và 3 bi xanh giống nhau vào 1 hộp có 7 ô trống.Có bao nhiêu cách xếp khác nhau sao cho 3 bi đỏ xếp cạnh nhau và 3 bi xanh xếp cạnh nhau.
Câu 4:
Có một hộp đựng 5 viên bi xanh, 6 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 9 viên bi có đủ 3 màu.
Câu 5:
Từ một tổ gồm 6 bạn nam và 5 bạn nữ, chọn ngẫu nhiên 5 bạn xếp vào bàn đầu theo những thứ tự khác nhau sao cho trong cách xếp trên có đúng 3 bạn nam ngồi bàn đầu đó. Hỏi có bao nhiêu cách xếp.
Câu 6:
Cho X={0;1;2;3;4;5;6;7}. Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau từ X sao cho một trong 3 chữ số đầu tiên phải có mặt chữ số 1
Câu 7:
Xếp 3 bi đỏ có bán kính khác nhau và 3 bi xanh giống nhau vào 1 hộp có 7 ô trống. Hỏi có bao nhiêu cách sắp xếp khác nhau.
Câu 8:
Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập tổ công tác?
Câu 9:
Cho tập A={1;2;3;4;5;6;7;8} Từ các chữ số thuộc tập A, lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số không bắt đầu bởi 123.
Câu 10:
Từ 10 câu hỏi bao gồm 6 câu hỏi dễ và 4 câu hỏi khó có thể lập được bao nhiêu đề kiểm tra gồm 3 câu hỏi, biết rằng trong mỗi đề kiểm tra phải có ít nhất 1 câu hỏi dễ và một câu hỏi khó.
Câu 11:
Một lớp có 33 học sinh trong đó có 7 nữ. Cần chia lớp thành 3 tổ; tổ 1 có 10 học sinh; tổ 2 có 11 học sinh; tổ 3 có 12 học sinh sao cho trong mỗi tổ có ít nhất 2 học sinh nữ. Hỏi có bao nhiêu cách chia như vậy?
Câu 12:
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm bảy chữ số, trong đó chữ số 2 xuất hiện đúng ba lần.
Câu 13:
Một tổ có 5 nam và 3 nữ, trong đó có 2 bạn A và B. Hỏi có bao nhiêu cách xếp tổ trên thành một hàng ngang sao cho:
Giữa 2 người nữ có đúng một người nam.
Câu 14:
Một tổ chuyên môn gồm 7 thầy và 5 cô giáo, trong đó thầy An và cô Bình là vợ chồng. Chọn ngẫu nhiên 5 người để lập hội đồng chấm thi vấn đáp. Có bao nhiêu cách lập sao cho hội đồng có 3 thầy, 2 cô và nhất thiết phải có thầy An hoặc cô Bình nhưng không có cả hai.
Câu 15:
Một tổ có 5 nam và 3 nữ, trong đó có 2 bạn A và B. Hỏi có bao nhiêu cách xếp tổ trên thành một hàng ngang sao cho A và B đứng cách nhau hai người.