Câu hỏi:
01/04/2024 103Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên: Gồm 4 chữ số
A. 1296
B. 2089
C. 218
D. 1297
Trả lời:
Gọi số cần lập là . Ta chọn a;b;c;d theo thứ tự sau:
a có 6 cách chọn
b có 6 cách chọn
c có 6 cách chọn
d có 6 cách chọn
Vậy có 64 = 1296 số
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau
Câu 2:
Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?
Câu 3:
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 5 chữ số
Câu 4:
Có 5 nữ và 6 nam xếp thành một hàng dọc sao cho đầu hàng và cuối hàng luôn là nữ. Hỏi có bao nhiêu cách xếp?
Câu 5:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên: Gồm 3 chữ số đôi một khác nhau
Câu 6:
Với sáu chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm bốn chữ số khác nhau và trong mỗi số nhất thiết phải có chữ số 1?
Câu 7:
Có 6 học sinh lớp 11 và 3 học sinh lớp 12 sẽ ngồi trên một hàng ngang có 9 ghế. Hỏi có bao nhiêu cách xếp chỗ ngồi cho 9 học sinh đó sao cho mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11?
Câu 8:
Trong một lớp học có 20 học sinh nam và 15 học sinh nữ. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn bốn học sinh làm tổ trưởng của 4 tổ sao cho trong 4 học sinh được chọn có cả nam và nữ.
Câu 9:
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau và là số lẻ
Câu 10:
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau và là số chẵn.
Câu 11:
Từ 20 câu hỏi trắc nghiệm gồm 9 câu hỏi dễ, 7 câu hỏi trung bình và 4 câu hỏi khó cần chọn ra 10 câu để làm đề kiểm tra trắc nghiệm sao cho trong đề phải có đủ cả ba loại câu hỏi dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra như vậy ?
Câu 12:
Từ một nhóm gồm 6 nam và 5 nữ cần chọn ra 4 người trong đó có ít nhất một nữ. Hỏi có bao nhiêu cách chọn như vậy ?
Câu 13:
Một thầy giáo có 5 cuốn sách hoá; 6 cuốn sách lí và 7 cuốn sách toán; đôi một khác nhau. Thầy giáo muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi thầy giáo có bao nhiêu cách tặng nếu: Thầy giáo muốn sau khi tặng xong mỗi thể loại còn lại ít nhất một cuốn.
Câu 14:
Cho tập hợp A={0;1;2;3;4;5}. Có thể lập bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau?
Câu 15:
Trên mặt phẳng cho 6 điểm phân biệt A, B, C, D, E; F. Hỏi có bao nhiêu vectơ khác vectơ – không, mà có điểm đầu và điểm cuối là các điểm đã cho ?