Câu hỏi:
03/04/2024 66Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(1;1) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
A. A’B’ = √5
B. A’B’ = √10
C. A’B’ = √11
D. A’B’ = √12
Trả lời:

Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì .
Phép tịnh tiến theo vecto →v(1;1) biến A(0; 2) thành A’(1; 3) và biến B(-2; 1) thành B’(-1; 2)
Do đó;A'B' = AB = √(- 2-0)2+ (1- 2)2= √5
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto →v biến M thành A thì →v bằng:
Câu 2:
Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto →v bằng:
Câu 3:
Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào sau đây là một phép biến hình.
Câu 4:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(-3;-2) biến đường tròn có phương trình (C): x2 + (y - 1)2 = 1 thành đường tròn (C’) có phương trình:
Câu 5:
Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto →v biến M thành M’, thì tọa độ vecto →v là:
Câu 6:
Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.
Câu 9:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(1;0) biến đường thẳng d: x - 1 = 0 thành đường thẳng d’ có phương trình:
Câu 10:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(-2;-1) biến parabol (P): y = x2 thành parabol (P’) có phương trình:
Câu 11:
Mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(2; -3) biến đường thẳng d: 2x + 3y - 1 = 0 thành đường thẳng d’ có phương trình
Câu 12:
Trong mặt phẳng tọa độ, phép tịnh tiến theo →v(1;2) biến điểm M (-1; 4) thành điểm M’ có tọa độ là:
Câu 13:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(0;0) biến điểm A(0;2) thành điểm A’ có tọa độ:
Câu 14:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto →v(3;1) biến đường thẳng d: 12x – 36y + 101 = 0 thành đường thẳng d’ có phương trình: