Trong mặt phẳng tọa độ Oxy, tìm tọa độ của các điểm là ảnh của điểm lần lượt qua các phép quay Q
56
18/03/2024
Thực hành 1 trang 26 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, tìm tọa độ của các điểm là ảnh của điểm lần lượt qua các phép quay Q(O, 45°), Q(O, 90°), Q(O, 180°), Q(O, 360°).
Trả lời
Ta có . Suy ra OM = 2.
Vẽ đường tròn (C) tâm O bán kính OM.
⦁ Ảnh của điểm qua phép quay Q(O, 45°):
Ta có Q(O, 45°) biến điểm M khác O thành điểm M1 sao cho OM1 = OM = 2 và (OM, OM1) = 45° nên .
Kẻ MH ⊥ Ox tại H.
Tam giác OMH vuông tại H: .
Suy ra .
Ta có .
Suy ra M1 ∈ Oy nên .
Mà OM1 = 2 (chứng minh trên) nên .
Vậy tọa độ M1(0; 2).
⦁ Ảnh của điểm qua phép quay Q(O, 90°):
Ta có Q(O, 90°) biến điểm M khác O thành điểm M2 sao cho OM2 = OM = 2 và (OM, OM2) = 90° nên .
Suy ra tam giác MOM2 vuông cân tại O.
Ta có .
Suy ra .
Khi đó tam giác MOM2 có OM1 là đường phân giác.
Vì vậy OM1 cũng là đường trung trực của tam giác MOM2 hay Oy là đường trung trực của tam giác MOM2.
Suy ra M2 là ảnh của điểm M qua phép đối xứng trục Oy.
Do đó hai điểm và M2 có cùng tung độ và có hoành độ đối nhau.
Vậy tọa độ .
⦁ Ảnh của điểm qua phép quay Q(O, 180°):
Ta có Q(O, 180°) biến điểm M khác O thành điểm M3 sao cho OM3 = OM = 2 và (OM, OM3) = 180° nên .
Suy ra O là trung điểm của MM3.
Khi đó
Vì vậy
Vậy tọa độ .
⦁ Ảnh của điểm qua phép quay Q(O, 360°):
Ta có Q(O, 360°) biến điểm M khác O thành điểm M4 sao cho OM4 = OM = 2 và (OM, OM4) = 360° nên .
Tức là, M4 ≡ M.
Vậy tọa độ .
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Phép đối xứng trục
Bài 4: Phép đối xứng tâm
Bài 5: Phép quay
Bài 6: Phép vị tự
Bài 7: Phép đồng dạng
Bài tập cuối chuyên đề 1