Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y)
74
22/02/2024
Bài 1.25 trang 31 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y).
a) Tìm ảnh của các điểm O(0; 0), N(2; 1).
b) Chứng minh rằng f là một phép đồng dạng. Tìm tỉ số đồng dạng.
Trả lời
a) Ảnh của điểm O(0; 0) qua phép biến hình f là O'(3 . 0; – 3 . 0) ≡ O(0; 0).
Ảnh của điểm N(2; 1) qua phép biến hình f là N'(3 . 2; – 3 . 1) = N'(6; – 3).
b) Chọn hai điểm M(x; y), N(z; t) bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép biến hình f. Khi đó M'(3x; – 3y), N'(3z; – 3t).
Ta có: MN =
M'N' =
Suy ra M'N' = 3MN.
Vậy phép biến hình f là phép đồng dạng với tỉ số k = 3.
Xem thêm các bài giải Chuyên đề Toán lớp 11 Kết nối tri thức hay, chi tiết khác: