Chứng minh rằng phép biến hình có được bằng cách thực hiện liên tiếp phép đồng dạng f với tỉ số k1
83
22/02/2024
Luyện tập 1 trang 30 Chuyên đề Toán 11: Chứng minh rằng phép biến hình có được bằng cách thực hiện liên tiếp phép đồng dạng f với tỉ số k1 và phép đồng dạng g với tỉ số k2 là một phép đồng dạng với tỉ số k1.k2.
Trả lời
Lấy hai điểm M, N bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép đồng dạng f với tỉ số k1 thì ta có M'N' = k1MN.
Gọi M", N" tương ứng là ảnh của M', N' qua phép đồng dạng g với tỉ số k2 thì ta có M"N" = k2M'N'.
Khi đó ta có M"N" = k2 M'N' = k2 . (k1MN) = (k1.k2)MN.
Do đó, M", N" tương ứng là ảnh của M, N qua phép đồng dạng với tỉ số k1.k2.
Từ đó suy ra điều phải chứng minh.
Xem thêm các bài giải Chuyên đề Toán lớp 11 Kết nối tri thức hay, chi tiết khác: