Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6). Viết phương trình đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự V(O, 3).

Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6). Viết phương trình đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự V(O, 3).

 

Trả lời

Lời giải:

Gọi I là trung điểm của AB, ta có I(2; 4) là tâm của đường tròn đường kính AB với bán kính là R = IA = \(\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 4} \right)}^2}} = \sqrt 5 \).

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C).

Vì đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự V(O, 3) nên I' là ảnh của I qua phép vị tự V(O, 3) và R' = 3R = \(3\sqrt 5 \).

Khi đó ta có: \[\overrightarrow {OI'} = 3\overrightarrow {OI} \]. Từ đó suy ra I'(6; 12).

Phương trình đường tròn (C) là (x – 6)2 + (y – 12)2 = \({\left( {3\sqrt 5 } \right)^2}\)hay (x – 6)2 + (y – 12)2 = 45.

Câu hỏi cùng chủ đề

Xem tất cả