Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau: a) y = cos ( 2x - pi /3) và y = cos ( x - pi /4); b)(y = sin ( 3x - pi /4) và y = sin ( x - pi /6).
15
08/09/2024
Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:
a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\);
b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\).
Trả lời
Lời giải
a) Giá trị tương ứng của hai hàm số \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) bằng nhau nếu
\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x - \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x - \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k2\pi \\x = \frac{{7\pi }}{{36}} + k\frac{{2\pi }}{3}\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
b) Giá trị tương ứng của hai hàm số \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) bằng nhau nếu
\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x - \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k2\pi \\x = \frac{{17\pi }}{{48}} + k\frac{\pi }{2}\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).