Giải các phương trình sau: a) sin(2x + 15°) + cos(2x – 15°) = 0; b) cos ( 2x + pi /5) + cos ( 3x - pi /6) = 0; c) tan x + cot x = 0; d) sin x + tan x = 0.

Giải các phương trình sau:

a) sin(2x + 15°) + cos(2x – 15°) = 0;

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\);

c) tan x + cot x = 0;

d) sin x + tan x = 0.

Trả lời

Lời giải

a) Ta có sin(2x + 15°) + cos(2x – 15°) = 0

sin(2x + 15°) = – cos(2x – 15°)

sin(2x + 15°) = – sin[90° – (2x – 15°)]

sin(2x + 15°) = sin[– 90° + (2x – 15°)]

sin(2x + 15°) = sin(2x – 105°)

\( \Leftrightarrow \left[ \begin{array}{l}2x + 15^\circ = 2x - 105^\circ + k360^\circ \\2x + 15^\circ = 180^\circ - \left( {2x - 105^\circ } \right) + k360^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}120^\circ = k360^\circ \\x = 67,5^\circ + k90^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Không xảy ra trường hợp 120° = k360°.

Vậy phương trình đã cho có nghiệm x = 67,5° + k90° (k ℤ).

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\)

\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left[ {\pi - \left( {3x - \frac{\pi }{6}} \right)} \right]\)

\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left( {\frac{{7\pi }}{6} - 3x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{5} = \frac{{7\pi }}{6} - 3x + k2\pi \\2x + \frac{\pi }{5} = - \left( {\frac{{7\pi }}{6} - 3x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{29\pi }}{{150}} + k\frac{{2\pi }}{5}\\x = \frac{{41\pi }}{{30}} - k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

c) Ta có tan x + cot x = 0

tan x = – cot x

tan x = cot(π – x)

\( \Leftrightarrow \tan x = \tan \left[ {\frac{\pi }{2} - \left( {\pi - x} \right)} \right]\)

\( \Leftrightarrow \tan x = \tan \left( {x - \frac{\pi }{2}} \right)\)

\( \Leftrightarrow x = x - \frac{\pi }{2} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \frac{\pi }{2} - k\pi = 0\,\,\left( {k \in \mathbb{Z}} \right)\). Vô lí.

Vậy phương trình đã cho vô nghiệm.

d) Điều kiện cos x ≠ 0 .

Ta có sin x + tan x = 0

\( \Leftrightarrow \sin x + \frac{{\sin x}}{{\cos x}} = 0\)

\( \Leftrightarrow \sin x\left( {1 + \frac{1}{{\cos x}}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\1 + \frac{1}{{\cos x}} = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = - 1\end{array} \right.\)

sin x = 0 (do sin2 x + cos2 x = 1)

x = kπ (k ℤ).

Vì x = kπ (k ℤ) thoả mãn điều kiện cos x ≠ 0 nên nghiệm của phương trình đã cho là

x = kπ (k ℤ).

Câu hỏi cùng chủ đề

Xem tất cả