Lời giải
a) Ta có sin(2x + 15°) + cos(2x – 15°) = 0
⇔ sin(2x + 15°) = – cos(2x – 15°)
⇔ sin(2x + 15°) = – sin[90° – (2x – 15°)]
⇔ sin(2x + 15°) = sin[– 90° + (2x – 15°)]
⇔ sin(2x + 15°) = sin(2x – 105°)
\( \Leftrightarrow \left[ \begin{array}{l}2x + 15^\circ = 2x - 105^\circ + k360^\circ \\2x + 15^\circ = 180^\circ - \left( {2x - 105^\circ } \right) + k360^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}120^\circ = k360^\circ \\x = 67,5^\circ + k90^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Không xảy ra trường hợp 120° = k360°.
Vậy phương trình đã cho có nghiệm x = 67,5° + k90° (k ∈ ℤ).
b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left[ {\pi - \left( {3x - \frac{\pi }{6}} \right)} \right]\)
\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left( {\frac{{7\pi }}{6} - 3x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{5} = \frac{{7\pi }}{6} - 3x + k2\pi \\2x + \frac{\pi }{5} = - \left( {\frac{{7\pi }}{6} - 3x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{29\pi }}{{150}} + k\frac{{2\pi }}{5}\\x = \frac{{41\pi }}{{30}} - k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Ta có tan x + cot x = 0
⇔ tan x = – cot x
⇔ tan x = cot(π – x)
\( \Leftrightarrow \tan x = \tan \left[ {\frac{\pi }{2} - \left( {\pi - x} \right)} \right]\)
\( \Leftrightarrow \tan x = \tan \left( {x - \frac{\pi }{2}} \right)\)
\( \Leftrightarrow x = x - \frac{\pi }{2} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \frac{\pi }{2} - k\pi = 0\,\,\left( {k \in \mathbb{Z}} \right)\). Vô lí.
Vậy phương trình đã cho vô nghiệm.
d) Điều kiện cos x ≠ 0 .
Ta có sin x + tan x = 0
\( \Leftrightarrow \sin x + \frac{{\sin x}}{{\cos x}} = 0\)
\( \Leftrightarrow \sin x\left( {1 + \frac{1}{{\cos x}}} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\1 + \frac{1}{{\cos x}} = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = - 1\end{array} \right.\)
⇔ sin x = 0 (do sin2 x + cos2 x = 1)
⇔ x = kπ (k ∈ ℤ).
Vì x = kπ (k ∈ ℤ) thoả mãn điều kiện cos x ≠ 0 nên nghiệm của phương trình đã cho là
x = kπ (k ∈ ℤ).