Tìm các giá trị của tham số m để a) –x^2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ

Bài 6.24 trang 18 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để

a) –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ;

b) x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.

Trả lời

a)

Xét phương trình –x2 + (m + 1)x – 2m + 1 = 0 có:

a = –1 < 0

∆ = (m + 1)2 – 4.(–1).(–2m + 1) = m2 + 2m + 1 – 8m + 4 = m2 – 6m + 5

Để –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ ⇔ Δ ≤ 0

⇔ m2 – 6m + 5 ≤ 0

Xét phương trình m2 – 6m + 5 = 0 có a = 1 > 0 và Δm = (–6)2 – 4.1.5 = 16 > 0

Do đó, phương trình m2 – 6m + 5 = 0 có hai nghiệm phân biệt là:

m1 = 1; m2 = 5

Do đó, m2 – 6m + 5 ≤ 0 ⇔ 1 ≤ m ≤ 5

Vậy khi 1 ≤ m ≤ 5 thì –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ.

b)

x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ

Xét phương trình x2 – (2m + 1)x + m + 2 = 0 có:

a = 1 > 0

∆ = [–(2m + 1)]2 – 4.1.(m + 2) = 4m2 + 4m + 1 – 4m – 8 = 4m2 – 7

Để x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ ⇔ Δ < 0

⇔ 4m2 – 7 < 0

⇔ m2<74

⇔ 72<m<72

Vậy khi 72<m<72 thì x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Câu hỏi cùng chủ đề

Xem tất cả