Câu hỏi:
06/03/2024 35Phân số \[\frac{a}{b}\] là phân số lớn nhất mà khi chia mỗi phân số \[\frac{{12}}{{35}};\frac{{18}}{{49}}\]cho \[\frac{a}{b}\] ta được kết quả là một số nguyên. Tính a + b.
A. 245
B. 251
C. 158
D. 496
Trả lời:
Trả lời:
Gọi phân số lớn nhất cần tìm là: \[\frac{a}{b}\] (a, b là nguyên tố cùng nhau)
Ta có: \[\frac{{12}}{{35}}:\frac{a}{b} = \frac{{12b}}{{35a}}\] là số nguyên, mà 12; 35 là nguyên tố cùng nhau
Nên \[12 \vdots a;b \vdots 35\]
Ta lại có: \[\frac{{18}}{{49}}:\frac{a}{b} = \frac{{18b}}{{49a}}\] là số nguyên, mà 18 và 49 nguyên tố cùng nhau
Nên \[18 \vdots a;b \vdots 49\]
Để \[\frac{a}{b}\] lớn nhất có a = UCLN(12; 18) = 6; b = BCNN(35; 49) = 245
Vậy tổng a + b = 6 + 245 = 251
Đáp án cần chọn là: B
Trả lời:
Gọi phân số lớn nhất cần tìm là: \[\frac{a}{b}\] (a, b là nguyên tố cùng nhau)
Ta có: \[\frac{{12}}{{35}}:\frac{a}{b} = \frac{{12b}}{{35a}}\] là số nguyên, mà 12; 35 là nguyên tố cùng nhau
Nên \[12 \vdots a;b \vdots 35\]
Ta lại có: \[\frac{{18}}{{49}}:\frac{a}{b} = \frac{{18b}}{{49a}}\] là số nguyên, mà 18 và 49 nguyên tố cùng nhau
Nên \[18 \vdots a;b \vdots 49\]
Để \[\frac{a}{b}\] lớn nhất có a = UCLN(12; 18) = 6; b = BCNN(35; 49) = 245
Vậy tổng a + b = 6 + 245 = 251
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người đi xe máy, đi đoạn đường AB với vận tốc 40km/h hết \[\frac{5}{4}\] giờ. Lúc về, người đó đi với vận tốc 45km/h. Tính thời gian người đó đi từ B về A?
Câu 3:
Kết quả của phép tính \[\frac{{\left( { - 7} \right)}}{6}:\left( { - \frac{{14}}{3}} \right)\] là phân số có tử số là:
Câu 4:
Giá trị nào dưới đây của x thỏa mãn \[\left( { - \frac{3}{5}} \right).x = \frac{4}{{15}}\]?
Câu 5:
Có bao nhiêu giá trị của x thỏa mãn \[\left( {\frac{7}{6} + x} \right):\frac{{16}}{{25}} = \frac{{ - 5}}{4}\]:
Câu 6:
Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\]có giá trị là số nguyên là:
Câu 7:
Tính giá trị biểu thức sau theo cách hợp lí
\[\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right)\]
Câu 8:
Cho \[P = \left( {\frac{7}{{20}} + \frac{{11}}{{15}} - \frac{{15}}{{12}}} \right):\left( {\frac{{11}}{{20}} - \frac{{26}}{{45}}} \right)\] và \[Q = \frac{{5 - \frac{5}{3} + \frac{5}{9} - \frac{5}{{27}}}}{{8 - \frac{8}{3} + \frac{8}{9} - \frac{8}{{27}}}}:\frac{{15 - \frac{{15}}{{11}} + \frac{{15}}{{121}}}}{{16 - \frac{{16}}{{11}} + \frac{{16}}{{121}}}}\]. Chọn kết luận đúng:
Câu 9:
Có bao nhiêu giá trị nguyên dương của x thỏa mãn \[{\left( {\frac{{ - 5}}{3}} \right)^3} < x < \frac{{ - 24}}{{35}}.\frac{{ - 5}}{6}\]?
Câu 10:
Tìm x biết \[\left( {x + \frac{1}{4} - \frac{1}{3}} \right):\left( {2 + \frac{1}{6} - \frac{1}{4}} \right) = \frac{7}{{46}}\]
Câu 11:
Giá trị của x thoả mãn \[\frac{{13}}{{15}} - \left( {\frac{{13}}{{21}} + x} \right).\frac{7}{{12}} = \frac{7}{{10}}\]?
Câu 12:
Để làm bánh caramen, Linh cần \[\frac{4}{5}\] cốc đường để làm được 10 cái bánh. Vậy muốn làm 1515 cái bánh thì Linh cần bao nhiêu cốc đường?
Câu 14:
Một hình chữ nhật có diện tích \[\frac{{48}}{{35}}{m^2}\] và có chiều dài là \[\frac{6}{5}\]m. Tính chiều rộng của hình chữ nhật đó.
Câu 15:
Điền số thích hợp vào ô trống:
Một ô tô chạy hết \[\frac{3}{4}\] giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \[\frac{1}{2}\] giờ thì ô tô phải chạy với vận tốc trung bình là: km/h
Điền số thích hợp vào ô trống:
Một ô tô chạy hết \[\frac{3}{4}\] giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \[\frac{1}{2}\] giờ thì ô tô phải chạy với vận tốc trung bình là: km/h