Một hình nón đỉnh S bán kính đáy R = a căn bậc hai 3, góc ở đỉnh là 120 độ. Mặt phẳng qua đỉnh hình nón cắt hình nón theo thiết diện là một tam giác

Một hình nón đỉnh S bán kính đáy R=a3, góc ở đỉnh là 120°. Mặt phẳng qua đỉnh hình nón cắt hình nón theo thiết diện là một tam giác. Diện tích lớn nhất của tam giác đó bằng

A. 3a2

B. 2a2

C. 32a2

D. 23a2

Trả lời

Chọn B

Một hình nón đỉnh S bán kính đáy R = a căn bậc hai 3, góc ở đỉnh là 120 độ. Mặt phẳng qua đỉnh hình nón cắt hình nón theo thiết diện là một tam giác (ảnh 1)

Giả sử ΔSAM là thiết diện tạo bởi mặt phẳng và hình nón.

Gọi AM=x 0<x2a3

Gọi H là trung điểm của AM

OHAMAMSOHAMSH

Vì ASB^=120°ASO^=60°SA=AOsin60°=2aSO=AOtan60°=a

OH=OA2AH2=3a2x24SH=OH2+SO2=4a2x24SΔSAM=12AM.SH=12x4a2x24

Ta có S'=124a2x24x244a2x24=16a22x284a2x24S'=0x=2a2

Một hình nón đỉnh S bán kính đáy R = a căn bậc hai 3, góc ở đỉnh là 120 độ. Mặt phẳng qua đỉnh hình nón cắt hình nón theo thiết diện là một tam giác (ảnh 2)
Smax=2a2

Câu hỏi cùng chủ đề

Xem tất cả