Câu hỏi:
30/01/2024 57
Một chiếc mâm đồng có bán kính r = 19,5 cm và một chiếc đĩa đồng có bán kính R = 6,5 cm. Hỏi diện tích của chiếc mâm gấp bao nhiêu lần diện tích chiếc đĩa?
Một chiếc mâm đồng có bán kính r = 19,5 cm và một chiếc đĩa đồng có bán kính R = 6,5 cm. Hỏi diện tích của chiếc mâm gấp bao nhiêu lần diện tích chiếc đĩa?
A. 3 lần;
A. 3 lần;
B. 9 lần;
B. 9 lần;
C. 5 lần;
C. 5 lần;
D. 8 lần.
D. 8 lần.
Trả lời:
Đáp án đúng là: B
Công thức tính diện tích hình tròn có bán kính R là: S = π . R2.
Diện tích bề mặt chiếc mâm là:
π . r2 = π . 19,52 = π . = π . (cm2);
Diện tích bề mặt chiếc đĩa là:
. R2 = . 6,52 = . = . (cm2);
Diện tích của chiếc mâm gấp diện tích chiếc đĩa số lần là:
(lần).
Vậy diện tích chiếc mâm gấp 9 lần diện tích chiếc đĩa.
Đáp án đúng là: B
Công thức tính diện tích hình tròn có bán kính R là: S = π . R2.
Diện tích bề mặt chiếc mâm là:
π . r2 = π . 19,52 = π . = π . (cm2);
Diện tích bề mặt chiếc đĩa là:
. R2 = . 6,52 = . = . (cm2);
Diện tích của chiếc mâm gấp diện tích chiếc đĩa số lần là:
(lần).
Vậy diện tích chiếc mâm gấp 9 lần diện tích chiếc đĩa.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Trong chân không, vận tốc ánh sáng là 299 792 458 m/s; với các tính toán không cần độ chính xác cao ta có thể coi vận tốc ánh sáng là 3.108 m/s. Trong một nghiên cứu, ánh sáng từ một ngôi sao đến Trái Đất mất 10 phút 20 giây. Khoảng cách giữa ngôi sao đó đến Trái Đất xấp xỉ bằng bao nhiêu ki-lô-mét?
Trong chân không, vận tốc ánh sáng là 299 792 458 m/s; với các tính toán không cần độ chính xác cao ta có thể coi vận tốc ánh sáng là 3.108 m/s. Trong một nghiên cứu, ánh sáng từ một ngôi sao đến Trái Đất mất 10 phút 20 giây. Khoảng cách giữa ngôi sao đó đến Trái Đất xấp xỉ bằng bao nhiêu ki-lô-mét?
Câu 9:
Điền từ thích hợp vào dấu “…”: Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và … hai số mũ.
Điền từ thích hợp vào dấu “…”: Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và … hai số mũ.
Câu 11:
Cho x là số hữu tỉ, x15 biểu diễn dưới dạng lũy thừa của x3 được viết là:
Cho x là số hữu tỉ, x15 biểu diễn dưới dạng lũy thừa của x3 được viết là: