Mẫu số liệu sau là chiều cao (đơn vị: cm) của các bạn trong tổ của Lan: 165 168 157 162 165
71
12/01/2024
Bài 5.17 trang 81 SBT Toán 10 Tập 1:
Mẫu số liệu sau là chiều cao (đơn vị: cm) của các bạn trong tổ của Lan:
165 168 157 162 165 165 179 148 170 167.
a) Tính khoảng tứ phân vị của mẫu số liệu trên.
b) Khoảng tứ phân vị có bị ảnh hưởng bởi chiều cao của bạn cao nhất, bạn thấp nhất không?
Trả lời
a) Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
148 157 162 165 165 165 167 168 170 179.
• Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa (số liệu thứ 5 và thứ 6) của mẫu số liệu đã sắp xếp.
Do đó Q2 =
• Nửa dữ liệu bên trái Q2 là: 148; 157; 162; 165; 165.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên trái Q2) nên Q1 = 162.
• Nửa dữ liệu bên phải Q2 là: 165; 167; 168; 170; 179.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên phải Q2) nên Q3 = 168.
Khi đó khoảng tứ phân vị của mẫu số liệu đã cho là:
DQ = Q3 – Q1 = 168 – 162 = 6.
Vậy khoảng tứ phân vị của mẫu số liệu đã cho là 6 cm.
b) Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp nên đo độ phân tán của 50% dữ liệu này.
Do đó khoảng tứ phân vị không bị ảnh hưởng bởi giá trị nhỏ nhất, giá trị lớn nhất.
Vậy khoảng tứ phân vị không bị ảnh hưởng bởi chiều cao của bạn cao nhất và bạn thấp nhất.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 12: Số gần đúng và sai số
Bài 13: Các số đặc trưng đo xu thế trung tâm
Bài 14: Các số đặc trưng đo độ phân tán
Bài tập cuối chương 5
Bài 15: Hàm số
Bài 16: Hàm số bậc hai