Câu hỏi:
04/04/2024 107
Khẳng định nào sau đây đúng?
Khẳng định nào sau đây đúng?
A. Nếu hai mặt phẳng và lần lượt chứa hai đường thẳng song song thì song song với nhau.
B. Hai mặt phẳng phân biệt không song song thì cắt nhau.
C. Hai mặt phẳng cùng song song với một đường thẳng thì song song với nhau.
D. Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trên mặt phẳng này đều song song với mọi đường thẳng nằm trên mặt phẳng kia.
Trả lời:
Chọn B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm của AC, BC và P là một điểm trên đoạn BD sao cho . Giao tuyến của mặt phẳng và mặt phẳng là
Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm của AC, BC và P là một điểm trên đoạn BD sao cho . Giao tuyến của mặt phẳng và mặt phẳng là
Câu 2:
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là
Câu 3:
Cho tứ diện ABCD, gọi ; lần lượt là trọng tâm các tam giác ABC và ADC. Khẳng định sai là
Cho tứ diện ABCD, gọi ; lần lượt là trọng tâm các tam giác ABC và ADC. Khẳng định sai là
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang với và .Gọi I, E lần lượt là trung điểm của AB và SA. Khẳng định nào sau đây sai?
Cho hình chóp S.ABCD có đáy ABCD là hình thang với và .Gọi I, E lần lượt là trung điểm của AB và SA. Khẳng định nào sau đây sai?
Câu 5:
Cho hình chóp S.ABCD, gọi K là trung điểm của SB, O là giao điểm của AC và BD. Khi đó, giao điểm N của DK và (SAC) là
Cho hình chóp S.ABCD, gọi K là trung điểm của SB, O là giao điểm của AC và BD. Khi đó, giao điểm N của DK và (SAC) là
Câu 6:
Cho hình lăng trụ tam giác ABC. A'B'C'. Gọi I, J lần lượt là trọng tâm của các tam giác ABC và A'B'C'.
Thiết diện tạo bởi mặt phẳng (AIJ) với hình lăng trụ đã cho là
Câu 7:
Cho hình chóp S.ABCD, đáy ABCD là tứ giác lồi; O là giao điểm của AC và BD. Gọi M là trung điểm của SB. Giao tuyến của (ADM) và (SAC) là
Cho hình chóp S.ABCD, đáy ABCD là tứ giác lồi; O là giao điểm của AC và BD. Gọi M là trung điểm của SB. Giao tuyến của (ADM) và (SAC) là