Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có)
81
07/01/2024
Bài 2 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
b)
Trả lời
a) Ta có: n = 1 + 3 + 5 + 4 + 2 + 1 = 16.
Số trung bình cộng:
Phương sai:
≈ 13,4.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
0; 4; 4; 4; 6; 6; 6; 6; 6; 9; 9; 9; 9; 10; 10; 17
Khi đó, khoảng biến thiên R = 17 – 0 = 17.
Vì n = 16 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (6 + 6) : 2 = 6.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 0; 4; 4; 4; 6; 6; 6; 6.
Vậy Q1 = (4 + 6) : 2 = 5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 6; 9; 9; 9; 9; 10; 10; 17.
Vậy Q3 = (9 + 9) : 2 = 9.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 9 – 5 = 4.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 9 + 1,5.4 = 15
Hoặc x < Q1 − 1,5∆Q = 5 − 1,5.4 = −1.
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 17.
b) Ta có: n = 1 + 6 + 8 + 9 + 4 + 2 = 30.
Số trung bình cộng:
Phương sai:
≈ 17,74.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24; 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27
Khi đó, khoảng biến thiên R = 27 – 2 = 25.
Vì n = 30 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (24 + 25) : 2 = 24,5.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24.
Vậy Q1 = 24.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27.
Vậy Q3 = 25.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 25 + 1,5 = 26,5
Hoặc x < Q1 − 1,5∆Q = 24 − 1,5.1 = 22,5.
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 2 và 27.
Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Bài tập cuối chương 6
Bài 1: Dấu của tam thức bậc hai
Bài 2: Giải bất phương trình bậc hai một ẩn