Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh góc BAJ = góc BAC = 45 độ
Bài 9.21 trang 58 SBT Toán 7 Tập 2: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh ^BAJ=^BAC=45° .
Lời giải:
Bài 9.21 trang 58 SBT Toán 7 Tập 2: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh ^BAJ=^BAC=45° .
Lời giải:
Gọi BJ là đường cao xuất phát từ B của tam giác ABC.
Xét hai tam giác AHJ và tam giác BCJ có:
AH = BC (gt)
(hai góc cùng phụ với )
Do đó ∆AHJ = ∆BCJ (cạnh huyền – góc nhọn).
Suy ra AJ = BJ (hai cạnh tương ứng).
Xét tam giác JAB vuông tại J có AJ = BJ (cmt) nên JAB là tam giác vuông cân tại J.
Vậy (đpcm).
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 33: Quan hệ giữa ba cạnh trong một tam giác
Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 36: Hình hộp chữ nhật và hình lập phương
Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác