Trả lời:
+ Ta có:
Tập số tự nhiên ℕ = {0; 1; 2; 3; …}.
Tập số nguyên ℤ = {…; ‒2; ‒1; 0; 1; 2; …}.
Tập số hữu tỉ ℚ = {…; ‒2; ‒1,5; ‒1; 0; 1; 1,5; …}
Ta sử dụng kí hiệu ⊂ để so sánh giữa các tập hợp với nhau. Do đó ℕ ⊂ ℤ ⊂ ℚ.
Vậy d) sai.
+ Ta có:
Tập số tự nhiên ℕ = {0; 1; 2; 3; …}.
Tập số nguyên ℤ = {…; ‒2; ‒1; 0; 1; 2; …}.
Tập số hữu tỉ ℚ = {…; ‒2; ‒1,5; ‒1; 0; 1; 1,5; …}
Ta sử dụng kí hiệu ⊂ để so sánh giữa các tập hợp với nhau. Do đó ℕ ⊂ ℤ ⊂ ℚ.
Vậy d) sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một căn phòng dạng hình hộp chữ nhật có kích thước lần lượt là 7,5 m; 6 m; 5,5 m. Biểu diễn các kích thước trên tập hợp số:
Một căn phòng dạng hình hộp chữ nhật có kích thước lần lượt là 7,5 m; 6 m; 5,5 m. Biểu diễn các kích thước trên tập hợp số:
Câu 8:
Cho các khẳng định sau:
(1) Số hữu tỉ là số được viết dưới dạng phân số với a, b ℤ, b ≠ 0.
(2) Số hữu tỉ là số nguyên.
(3) ℕ ℤ
(4) ℕ ⊂ ℚ.
Các khẳng định sai là:
Cho các khẳng định sau:
(1) Số hữu tỉ là số được viết dưới dạng phân số với a, b ℤ, b ≠ 0.
(2) Số hữu tỉ là số nguyên.
(3) ℕ ℤ
(4) ℕ ⊂ ℚ.
Các khẳng định sai là:
Câu 9:
Giải thích vì sao các số ‒5; 0; ‒0,41; là các số hữu tỉ. Viết kí hiệu các số này trong tập số hữu tỉ.
Giải thích vì sao các số ‒5; 0; ‒0,41; là các số hữu tỉ. Viết kí hiệu các số này trong tập số hữu tỉ.
Câu 10:
Điền kí hiệu ℕ; ℤ; ℚ thích hợp vào chỗ chấm (điền tất cả các khả năng có thể): 2022 ∈ …
Điền kí hiệu ℕ; ℤ; ℚ thích hợp vào chỗ chấm (điền tất cả các khả năng có thể): 2022 ∈ …
Câu 12:
Cho các khẳng định sau:
(1) 0,3 không thuộc ℕ;
(2) ‒2 ℕ;
(3) ℚ, b ℤ, b ≠ 0;
(4) 1 ⊂ ℚ;
(5) ℤ;
(6) ℤ.
Số khẳng định đúng trong các khẳng định trên là:
Cho các khẳng định sau:
(1) 0,3 không thuộc ℕ;
(2) ‒2 ℕ;
(3) ℚ, b ℤ, b ≠ 0;
(4) 1 ⊂ ℚ;
(5) ℤ;
(6) ℤ.
Số khẳng định đúng trong các khẳng định trên là:
Câu 13:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) ℕ ⊂ ℤ ⊂ ℚ;
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) ℕ ⊂ ℤ ⊂ ℚ;