Câu hỏi:
01/04/2024 45Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt hai lần, chữ số 3 có mặt ba lần và các chữ số còn lại có mặt nhiều nhất một lần?
A. 23100.
B. 11430.
C. 11760.
D. 11340.
Trả lời:
Đáp án cần chọn là: D
Gọi số tự nhiên thỏa mãn bài toán có dạng .
Xét trường hợp có cả chữ số 0 đứng đầu.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là
Do đó có số.
Xét trường hợp chữ số 0 đứng đầu.
a=0 nên có 1 cách chọn.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.
Do đó có số.
Vậy có 11760−420=11340 số.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tập hợp . Gọi S là tập hợp các số có 3 chữ số khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu.
Câu 2:
Từ các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Câu 3:
Một con súc sắc đồng chất được đổ 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là:
Câu 6:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp và một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 7:
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
Câu 8:
Một nhóm sinh viên có 4 nam 2 nữ ngồi và 9 ghế hàng ngang. Hỏi có bao nhiêu cách xếp sao cho nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có ít nhất 2 ghế?
Câu 9:
Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?