Chứng minh rằng a^3 + b^3 = (a + b)^3 – 3ab(a + b). Áp dụng, tính a^3 + b^3 biết a + b = 4 và ab = 3.
Chứng minh rằng a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng, tính a3 + b3 biết a + b = 4 và ab = 3.
Chứng minh rằng a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng, tính a3 + b3 biết a + b = 4 và ab = 3.
Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3
= a3 + 3ab(a + b) + b3
Do đó a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng:
Với a + b = 4 và ab = 3, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b)
= 43 – 3 . 3 . 4 = 64 – 36 = 28.