Cho tứ diện ABCD có DA ⊥ (ABC), ABC là tam giác cân tại A. Gọi M là trung điểm của BC.

Cho tứ diện ABCD có DA (ABC), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ AH MD tại H.

a) Chứng minh rằng AH (BCD).

b) Gọi G, K lần lượt là trọng tâm của tam giác ABC và DBC. Chứng minh rằng GK (ABC).

Trả lời

Media VietJack

a) Tam giác ABC cân tại A Þ Trung tuyến AM ^ BC.

Lại có DA ^ (ABC) Þ DA ^ BC.

Þ BC ^ (ADM) Û BC ^ AH. (1)

Theo giả thiết: AH ^ DM. (2)

Từ (1) và (2) suy ra AH ^ (BCD).

b) Ta có: MKMD=MGMA=13   nên GK // AD (theo định lí Thalès.

Ta lại có AD ^ (ABC) suy ra GK ^ (ABC).