Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắ

Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự tại N và D. Khẳng định nào sau đây là đúng?

 

A. NC = ND;
B. DB = NC;
C. Cả A, B đều sai

D. Cả A, B đều đúng.

Trả lời

Đáp án đúng là: A

Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự tại N và D. Khẳng định nào sau đây là đúng? A. NC = ND; B. DB = NC; C. Cả A, B đều sai; D. Cả A, B đều đúng. (ảnh 1)

Ta có AN ⊥ BC (do H là trực tâm của tam giác ABC) nên HN ⊥ CM (H ∈ AN, M ∈ BC).

Theo đề bài ta có IK // DC, IK ⊥ HM, do đó HM ⊥ DC hay HM ⊥ NC (N ∈ DC).

Tam giác HNC có: HM ⊥ NC, CM ⊥ HN.

Do đó M là trực tâm của tam giác HNC.

Suy ra MN ⊥ HC.

Lại có  HC ⊥ AB nên MN // AB hay MN // DB.

Xét tam giác CBD có MN // DB nên theo định lí Thalès ta có:

 CMMB=CNND hay CNND=1  (Vì CM = MB, do M là trung điểm của BC)

Suy ra CN = ND.

Câu hỏi cùng chủ đề

Xem tất cả