Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắ
16
10/11/2024
Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự tại N và D. Khẳng định nào sau đây là đúng?
A. NC = ND;
B. DB = NC;
C. Cả A, B đều sai
Trả lời
Đáp án đúng là: A
Ta có AN ⊥ BC (do H là trực tâm của tam giác ABC) nên HN ⊥ CM (H ∈ AN, M ∈ BC).
Theo đề bài ta có IK // DC, IK ⊥ HM, do đó HM ⊥ DC hay HM ⊥ NC (N ∈ DC).
Tam giác HNC có: HM ⊥ NC, CM ⊥ HN.
Do đó M là trực tâm của tam giác HNC.
Suy ra MN ⊥ HC.
Lại có HC ⊥ AB nên MN // AB hay MN // DB.
Xét tam giác CBD có MN // DB nên theo định lí Thalès ta có:
hay (Vì CM = MB, do M là trung điểm của BC)
Suy ra CN = ND.