Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, AC. Khẳng định nào sau đây sai? A. EF // MC; B. MN // EF; C. PQ //

Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, AC. Khẳng định nào sau đây sai?

A. EF // MC;
B. MN // EF;
C. PQ // EF;
D. M, N, P, Q thẳng hàng.

Trả lời

Đáp án đúng là: A

Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, AC. Khẳng định nào sau đây sai? A. EF // MC; B. MN // EF; C. PQ // EF; D. M, N, P, Q thẳng hàng. (ảnh 1)

Ta có QD AC, HE AC (H BE) nên HE // QD hay BE // QD (H BE).

Xét tam giác ADQ có HE // DQ nên theo định lí Thalès ta có:  AEEQ=AHHD (1).

Có HF AB (H CF), DM AB nên HF // DM hay CF // DM.

Xét tam giác AMD có HF // DM nên theo định lí Thalès ta có: AFFM=AHHD  (2).

Từ (1) và (2) suy ra  AEEQ=AFFM.

Trong tam giác AMQ có  nên EF // MQ (định lí Thaslès đảo) (*).

Xét tam giác BFC có CF // DM nên theo định lí Thalès ta có: BMBF=BDBC  (3).

Có DN BE, BE EC (E AC) nên DN // CE.

Xét tam giác BEC có DN // CE nên theo định lí Thalès ta có: BNBE=BDBC  (4).

Từ (3) và (4) suy ra BMBF=BNBE .

Trong tam giác BEF có BMBF=BNBE nên MN // EF (định lí Thaslès đảo) (**).

Xét tam giác BEC có QD // BE nên theo định lí Thalès ta có: CQQE=CDDB  (5).

Có DP CF, BF CF (F AB) nên DP // BF.

Xét tam giác BFC có  DP // BF nên theo định lí Thalès ta có:  CPPF=CDDB(6).

Từ (5) và (6) suy ra CQQE=CPPF .

Trong tam giác CEF có CQQE=CPPF  nên PQ // EF (định lí Thaslès đảo)(***)

Từ (*), (**), (***) suy ra M, N, P, Q thẳng hàng.

Vậy A sai.

Câu hỏi cùng chủ đề

Xem tất cả