Cho tam giác ABC có M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Trong hình vẽ được có bao nhiêu cặp tam

Cho tam giác ABC có M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Trong hình vẽ được có bao nhiêu cặp tam giác đồng dạng?

A. 4;

B. 6;

C. 8;

D. 10.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: D

Cho tam giác ABC có M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Trong hình vẽ được có bao nhiêu cặp tam (ảnh 1)

Vì M, N lần lượt là trung điểm của AB, AC.

Suy ra MN là đường trung bình của tam giác ABC nên MN // BC.

Vì M, P lần lượt là trung điểm của AB, BC.

Suy ra MP là đường trung bình của tam giác ABC nên MP // AC.

Vì N, P lần lượt là trung điểm của AC, BC.  

Suy ra NP là đường trung bình của tam giác ABC nên NP // AB.

Xét tam giác ABC:

+ Do MN // BC nên ΔAMN ΔABC.

+ Do MP // AC nên ΔMBP ΔABC.

+ Do NP // AB nên ΔNPC ΔABC.

Vì ΔAMN ΔABC, ΔMBP ΔABC, ΔNPC ΔABC nên các tam giác AMN, MBP, NPC đôi một đồng dạng với nhau.

Xét hai tam giác AMN và PNM có:

AM = PN =12AB

MN: Cạnh chung

MP = AN =12AC

Suy ra ΔAMN = ΔPNM (c – c – c).

Do đó, ΔAMN ΔPNM.

Từ đó suy ra 5 tam giác AMN, PNM, MBP, NPC, ABC đôi một đồng dạng với nhau.

Vậy có tất cả 10 cặp tam giác đồng dạng.

Câu hỏi cùng chủ đề

Xem tất cả