Cho tam giác ABC có M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Trong hình vẽ được có bao nhiêu cặp tam
5
16/11/2024
Cho tam giác ABC có M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Trong hình vẽ được có bao nhiêu cặp tam giác đồng dạng?
C. 8;
D. 10.
Trả lời
Hướng dẫn giải:
Đáp án đúng là: D
Vì M, N lần lượt là trung điểm của AB, AC.
Suy ra MN là đường trung bình của tam giác ABC nên MN // BC.
Vì M, P lần lượt là trung điểm của AB, BC.
Suy ra MP là đường trung bình của tam giác ABC nên MP // AC.
Vì N, P lần lượt là trung điểm của AC, BC.
Suy ra NP là đường trung bình của tam giác ABC nên NP // AB.
Xét tam giác ABC:
+ Do MN // BC nên ΔAMN ᔕ ΔABC.
+ Do MP // AC nên ΔMBP ᔕ ΔABC.
+ Do NP // AB nên ΔNPC ᔕ ΔABC.
Vì ΔAMN ᔕ ΔABC, ΔMBP ᔕ ΔABC, ΔNPC ᔕ ΔABC nên các tam giác AMN, MBP, NPC đôi một đồng dạng với nhau.
Xét hai tam giác AMN và PNM có:
AM = PN
MN: Cạnh chung
MP = AN
Suy ra ΔAMN = ΔPNM (c – c – c).
Do đó, ΔAMN ᔕ ΔPNM.
Từ đó suy ra 5 tam giác AMN, PNM, MBP, NPC, ABC đôi một đồng dạng với nhau.
Vậy có tất cả 10 cặp tam giác đồng dạng.