Cho phương trình 4^-|x-m|*log căn 2(x^2-2x+3) +2^(2x-x^2)*log 1/2 (2|x-m|+2)=0 với m là tham số.
35
26/11/2024
Cho phương trình 4−|x−m|.log√2(x2−2x+3)+22x−x2.log12(2|x−m|+2)=0 với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là
A. 4.
B. 1.
C. 2.
D. 3.
Trả lời
Phương trình đã cho tương đương với phương trình
2−2|x−m|+1.log2(x2−2x+3)−22x−x2.log2(2|x−m|+2)=0⇔2−2|x−m|+1.log2(x2−2x+3)=22x−x2.log2(2|x−m|+2)⇔2x2−2x.log2(x2−2x+3)=22|x−m|−1.log2(2|x−m|+2).Xét hàm số
f(t)=2t−3.log2t với
t≥2. Do
t≥2 suy ra
log2t≥1.Ta có:
f' với
Do đó hàm số
đồng biến trên
Vẽ đồ thị các hàm số
và
trên cùng một hệ trục tọa độ.

Đồ thị hai hàm số tiếp xúc với nhau tại điểm (1;1). Điểm cực trị của đồ thị hàm số
là
điểm cực trị của đồ thị hàm số
là
Dựa vào đồ thị, để (*) có ba nghiệm phân biệt thì
Tổng tất cả các giá trị của tham số m thỏa màn là
Chọn D